
HARISH CHANDRA P.G. COLLEGE, VARANASI 

Subject:- Data Structure using C & C++
Class:- BCA 3rd Semester
Topic : Stack And Queues
Sub-Topic:- Stack and queue operation Introduction
Key Words : Stack , infix ,prefix,postfix,Queue,Dqueue,priority Queue

Name :- Alok Kumar
Department of BCA
Harish Chandra P G College ,Varanasi.
Mobile no 9696019403
Email :- alok.seth4@gmail.com

6

5

3

3

7

1

Top

front

rear

Stack Queue



Stack
A stack is an Abstract Data Type (ADT), commonly used in most programming 
languages. It is named stack as it behaves like a real-world stack, for example – a 
deck of cards or a pile of plates, etc.

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the 
element which is placed (inserted or added) last, is accessed first. In stack terminology, 
insertion operation is called PUSH operation and removal operation is 
called POP operation.



Basic Operations

Stack operations may involve initializing the stack, using it and then de-initializing it. Apart 

from these basic stuffs, a stack is used for the following two primary operaƟons −

push() − Pushing (storing) an element on the stack.

pop() − Removing (accessing) an element from the stack.

When data is PUSHed onto stack.

To use a stack efficiently, we need to check the status of stack as well. For the same purpose, 

the following funcƟonality is added to stacks −the following funcƟonality is added to stacks −

peek() − get the top data element of the stack, without removing it.

isFull() − check if stack is full.

isEmpty() − check if stack is empty.

At all times, we maintain a pointer to the last PUSHed data on the stack. As this pointer 

always represents the top of the stack, hence named top. The top pointer provides top value 

of the stack without actually removing it.



Program to illustrate stack operation
#include<stdio.h>
#include<conio.h>
int stk[7];
int top=0;
int max=7;
int min=0;
void push(int value)
{
if(top==max)
{{
printf("stack is full");
}
else
{
stk[top]=value;
top++;
}
}



int pop()
{
int vl;
if(top==min)
{
printf("stack is empty");
}
else
{
vl=stk[--top];
}
return vl;return vl;
}
void display()
{
int i;
for(i=0;i<top;i++)
{
printf("%d \t",stk[i]);
}
printf("\n");
}



void main()
{
int i;
push(6);
push(5);
push(9);
push(11);
display();
i=pop();
display();
printf("your poped value is %d",i);printf("your poped value is %d",i);
getch();
}



Infix to post fix using Stack



Program to convert infix to postfix expression











Queue
Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a 
queue is open at both its ends. One end is always used to insert data (enqueue) and queue is open at both its ends. One end is always used to insert data (enqueue) and 
the other is used to remove data (dequeue). Queue follows First-In-First-Out 
methodology, i.e., the data item stored first will be accessed first.

Queue Representation
As we now understand that in queue, we access both ends for different reasons. The 
following diagram given below tries to explain queue representation as data 
structure −



Program to demonstrate Queue operation





Double Ended Queue
Double ended queue is a more generalized form of queue data structure which allows 
insertion and removal of elements from both the ends, i.e , front and back.

Implementation of Double ended QueueImplementation of Double ended Queue
Here we will implement a double ended queue using a circular array. It 
will have the following methods:
push_back : inserts element at back
push_front : inserts element at front
pop_back : removes last element
pop_front : removes first element
get_back : returns last element
get front : returns first element
empty : returns true if queue is empty
full : returns true if queue is full



Priority Queue
Priority Queue is an extension of queue with following properties.
Every item has a priority associated with it.
An element with high priority is dequeued before an element with low priority.
If two elements have the same priority, they are served according to their order in the 
queue.
In the below priority queue, element with maximum ASCII value will have the highest 
priority.



A typical priority queue supports following operations.
insert(item, priority): Inserts an item with given priority.
getHighestPriority(): Returns the highest priority item.
deleteHighestPriority(): Removes the highest priority item.




