HARISH CHANDRA P.G. COLLEGE, VARANASI

Subject:- Data Structure using C & C++

Class:- BCA 3¢ Semester

Topic : Stack And Queues

Sub-Topic:- Stack and queue operation Introduction

Key Words : Stack , infix ,prefix,postfix,Queue, Dqueue,priority Queue

Name :- Alok Kumar
Department of BCA
Top =Sl Harish Chandra P G College ,Varanasi.

_ _ Mobile no 9696019403

Email :- alok.seth4@gmail.com

5 7 front

Stack Queue

Stack

A stack is an Abstract Data Type (ADT), commonly used in most programming
languages. It is named stack as it behaves like a real-world stack, for example — a
deck of cards or a pile of plates, etc.

e —

e ——

e —

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the
element which is placed (inserted or added) last, is accessed first. In stack terminology,
insertion operation is called PUSH operation and removal operation is

called POP operation.

Jwewe weg

Last In - First Qut
Push

U
]
]

Data Element Data Element |
|
Data Element Data Element |
|
Data Element Data Element |
|

|
Data Element Data Element |

|
Data Element Data Element |
|

Stack Stack

Basic Operations

Stack operations may involve initializing the stack, using it and then de-initializing it. Apart
from these basic stuffs, a stack is used for the following two primary operations -

push() - Pushing (storing) an element on the stack.

pop() - Removing (accessing) an element from the stack.

When data is PUSHed onto stack.

To use a stack efficiently, we need to check the status of stack as well. For the same purpose,
the following functionality is added to stacks -

peek() — get the top data element of the stack, without removing it.

isFull() - check if stack is full.

isEmpty() — check if stack is empty.

At all times, we maintain a pointer to the last PUSHed data on the stack. As this pointer
always represents the top of the stack, hence named top. The top pointer provides top value

of the stack without actually removing it.

Program fto illustrate stack operation
#include<stdio.h>
#include<conio.h>
int stk[7];

int top=0;

int max=7;

int min=0;

void push(int value)
{

if(top==max)

{

printf("stack is full”);
}

else

{

stk[top]=value;
top++;

}

}

int pop()

{

int vl;
if(top==min)

{

printf("stack is empty");
}

else

{

vi=stk[--top];

}

return vi;

}

void display()

{

inti;
for(i=0;i<top;i++)
{

printf("%d \t",stk[i]);
}

printf("\n n X

}

void main()
{

inti;
push(6);
push(5);
push(9);
push(11);
display();
i=pop();
display();
printf("your poped value is %d",i);
getch();

}

Infix to post fix using Stack

The Correct Way
Infix to Postfix Conversion

Expression=A+B*C/D-F+AAE

Scanned Symbol Stack Output Reason

A A Step 2

A Step 3.1
AB Step 2
AB Step 3.1

ABC Step 2
ABC* Step 3.2 / prec. is equal to *

so not higher, so going
312
ABC*D Step 2 toser
ABC*D/+ Step 3.2 "ouhithene

popped & afp. - will be pushed
ABC*D/+F Step 2
ABC*D/+F- Step 3.2 - will be popped, added

to ofp and then +
to stack

ABC*D/+F-A Step 2
A ABC*D/+F-A Step 2
E ABC*D/+F-AE Step 2

(empty) ABC*D/+F-AEn+ Step 8

Program to convert infix to postfix expression

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// A structure to represent a stack

typedef struct node {

int top;

int maxSize;

// we are storing string in integer array, this will not give error

// as values will be stored in ASCII and returned in ASCII thus, returned as string again
int* array;

}Stack;

Stack* create(int max)

{

Stack* stack = (Stack*)malloc(sizeof(Stack));
stack->maxSize = max;

stack->top = -1;

stack->array = (int*)malloc(stack->maxSize * sizeof(int));
return stack;

¥

// Checking with this function is stack is full or not
S/ Will return true is stack is full else false
//Stack is full when top is equal to the last index
int isFull(Stack* stack)

{

if(stack->top == stack->maxSize - 1){

printf("Will not be able to push maxSize reached\n");
|

// Since array starts from @, and maxSize starts from 1
return stack-»>top == stack-»maxSize - 1;

}

// By definition the Stack is empty when top is equal to -1
// Will return true if top is -1

int isEmpty(Stack* stack)

{

return stack->top == -1;

}

// Push function here, inserts value in stack and increments stack top by 1
void push(Stack* stack, int item)

{

if (isFull(stack))

return;

stack->array[++stack->top] = item;

}

// Function to remove an item from stack. It decreases top by 1
int pop(Stack* stack)

{

if (isEmpty(stack))

return INT_MIN;

return stack->array[stack->top--];

}

// Function to return the top from stack without removing it
int peek(Stack* stack)

{

if (isEmpty(stack))

return INT MIN;

return stack-»array[stack->top];

}

// A utility function to check if the given character is operand
int checkIfOperand(char ch)

{

return: (ch = "a’ 8 ch <= "z’) || (ch »>= "&" 88 ch <= "Z');

¥

// Fucntion to compare precedence

// If we return larger value means higher precedence
int precedence(char ch)

1

switch (ch)

{ 1]

case "+ ;

case '-'

return 1;

casg ks
case "J':
return 2;

return 2;jcase "~':

return 3;
h
return -1;
)

// The driver function for infix to postfix conversion
int covertInfixToPostfix(char* expression)

{

ik I, 3%

// Stack size should be equal to expression size for safety
Stack* stack = create(strlen(expression));

if(!stack) // just checking is stack was created or not
return -1 ;

for (i =@, j = -1; expression[i]; ++i)

{

// Here we are checking is the character we scanned is operand or not
// and this adding to to output.

if (checkIfOperand(expression[i]))

expression[++]j] = expression[i];

// Here, if we scan character “(°, we need push it to the stack.
else if (expression[i] == '(")
push(stack, expression[i]);

// Here, if we scan character is an ‘)’, we need to pop and print from the stack
// do this until an ‘(¢ is encountered in the stack.
else if (expression[i] == ")")

{

while (!isEmpty(stack) && peek(stack) != "(")
expression[++j] = pop(stack);

if (!isEmpty(stack) && peek(stack) != "(")
return -1; // invalid expression

else

pop(stack);

h

else // if an opertor

{

while (!isEmpty(stack) && precedence(expression[i]) <= precedence(peek(stack)))
expression[++j] = pop(stack);

push(stack, expression[i]);

¥
)

// Once all inital expression characters are traversed
// adding all left elements from stack to exp

while (lisEmpty(stack))

expression[++j] = pop(stack);

expression[++]j] = "\@';
strrev(expression);

printf("\n%s", expression);
return 1;

1

int main()

{

char expression[] = "a+b*c-d";
strrev(expression);
covertInfixToPostfix(expression);
getch();

return 0;

¥

Queue

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a
gueue is open at both its ends. One end is always used to insert data (enqueue) and
the other is used to remove data (dequeue). Queue follows First-In-First-Out
methodology, i.e., the data item stored first will be accessed first.

Queue Representation

As we now understand that in queue, we access both ends for different reasons. The
following diagram given below tries to explain queue representation as data
structure -

- B
In Data Data Data) Data Out
L —
Last In Last Out First In First Out

Queue

Program to demonstrate Queue operation

#include<stdio.h>
#tinclude<conio.h>
#tdefine MAX 10
typedef struct node
{

int que[MAX];

int front;

int rear;

HQueue;

void init(Queue *q)
{
g->front = g->rear = 0;

}

void enqueue(Queue * q ,int value)
{

if(g->rear == MAX)

printf("queue is full™);

else

{

g->que[g->rear]=value;

g->rear++;

5

h

int dequeue(Queue * q)
{int v;

if(g->front == g->rear)
printf("queue is empty");
else

else
v=(q->que[q->front++];
return v,

}
void display(Queue *q)

{

int i;

for(i=g->front ; i<g->rear ; i++)
printf("%d \t",q->que[i]);
prantf{™xn");

h

void main()

{

Queue q;

int 1;
init(&q);
enqueue(&q,6);
enqueue(&q,7);
enqueue(&q,2);
enqueue(&q,12);
enqueue(&q,9);
display(&q);
i=dequeue(&q);
display(&q);
printf("your poped value is %d",i);
getch();

h

Double Ended Queue
Double ended queue is a more generalized form of queue data structure which allows

insertion and removal of elements from both the ends, i.e, front and back.

POP BACK
6"\ /,f— PUSH FRONT
S |~
REAR FRONT
A \
_// \\;, POP FRONT
PUSH BACK

Implementation of Double ended Queue
Here we will implement a double ended queue using a circular array. It
will have the following methods:

push_back : inserts element at back

push_front : inserts element at front

pop_back : removes last element

pop_front : removes first element

get_back : returns last element

get front : returns first element

empty : returns true if queue is empty

full : returns true if queue is full

Priority Queue

Priority Queue is an extension of queue with following properties.

Every item has a priority associated with it.

An element with high priority is dequeued before an element with low priority.

If two elements have the same priority, they are served according to their order in the
queue.

In the below priority queue, element with maximum ASCII value will have the highest
priority.

Priority Queue

Initial Queue = {}
Operation Return value Queue Content

insert (C)
insert (O)
insert (D)
remove max
insert (I)
insert (N)

\ ’

o

L ONCTCHEN TR
wiwlwilwlw/lel o)
o Z

insert (G)'

A typical priority queue supports following operations.
insert(item, priority): Inserts an item with given priority.
getHighestPriority(): Returns the highest priority item.
deleteHighestPriority(): Removes the highest priority item.

Thank you

