
                           B.Sc 3rd YEAR 
                           PAPER - 1ST ,  UNIT- (IV)
                                              {  METRIC SPACE  }

METRIC:
                 Let X ≠ ϕ be set then a function d : X×X →R ( set of real numbers) is called metric on X 
if it satisfies the following conditions -

(i)  d(x, y) ≥ 0                                                                             (Non-negativity)

(ii) d(x, y) = 0 ⇔ x = y

(iii) d(x, y) = d(y, x)                                                                     (Symmetry)

(iv) d(x, y) ≤  d(x, z) + d(z, y), ∀ x, y, z є X                                (Triangle inequality)

Note: d is also called distance function.

METRIC SPACE:
                             The pair (X, d) is called metric space.
EXAMPLE: (1)
Let X=R, d : X×X →R defined by d(x, y) = |x - y|  then d is a metric on X.
SOLUTION:  
(i) let x, y є R then x-y є R ⟹  |x - y| ≥ 0 ⟹ d(x, y) ≥ 0

(ii) d(x, y)= 0  |x - y| = 0  x-y=0  x = y⇔ ⇔ ⇔

(iii) d(x, y)= |x - y| = |-(y-x)| = |y - x| = d(y, x)

(iv)let z є R, d(x, y)= |x - y| = |x-z+z-y| ≤ |x-z| + |z-y| = d(x, z) + d(z, y) 
                                                                                                     {by triangle inequality in modulus}
Thus d is a metric on R .
REMARK: The above metric is called usual metric on R. 
                                                                                                        0 ,      x = y 
EXAMPLE: (2) Let X be a non empty s et and d(x, y) =          
                                                                                                        1 ,      x ≠ y     ∀  x, y    є X
then d is a metric and is called discrete meric on X.
SOLUTION:
(i) From the definition of d , for all x , y  є X , d(x, y) is either 0 or 1 hence d(x, y) ≥ 0

(ii) d(x, y) = 0  x = y                                                            (  by def. of d )    ⇔

(iii) let x, y  є X then x = y or x ≠ y

      if  x = y  y = x, so d(x, y) = d(y, x)⟹



    
  if x ≠ y  y ≠ x, so d(x, y) = d(y, x)⟹
      in both cases d(x, y) = d(y, x)

(iv) let z є X
       case I: if  x = y then either  x = y = z or x = y ≠ z
                                 either d(x, y) = d(x, z) = d(z, y) = 0 or d(x, y) = 0 and d(x, z) = d(z, y) = 1⟹
                                 either d(x, y) = d(x, z) + d(z, y)       or d(x, y) < d(x, y) +d(z, y)⟹
                                so  d(x, y) ≤ d(x, y) +d(z, y) 
       cases II: if  x ≠ y then either  x ≠ y = z or  x ≠ y ≠ z
                                 either d(x, y) = d(x, z) = 1 and d(z, y) = 0 or d(x, y) = d(x, y) = d(z, y) = 1⟹
                                 either d(x, y) = d(x, y) +d(z, y)                  or d(x, y) < d(x, y) +d(z, y)⟹
                                so, d(x, y) ≤ d(x, y) +d(z, y)
thus in either case d(x, y) ≤ d(x, y) +d(z, y) ∀  x, y, z   є X, hence d is a metric on X

NOTE:

MINKOSWKI INQUALITY: if p ≥ 1, xi, yi  are positive real numbers    ∀  i є N

EXAMPLE: (3) Let X = R2   ,  d(x, y) = [(x1 – y1)2  + (x2 – y2)2]1/2  , x = (x1 ,x2), y = (y1, y2)  є R2  then 
d is a metric on R2.

SOLUTION:

(i) since        (x1 – y1)2   ≥ 0,  x2 – y2)2   ≥ 0    (x⟹ 1 - y1)2  + (x2 -  y2)2   ≥0

                                                                   [(x⟹ 1 – y1)2  + (x2 – y2)2]1/2   ≥0  d(x, y) ≥0⟹
(ii) d(x, y) = 0   [(x⇔ 1 – y1)2  + (x2 – y2)2]1/2 = 0  (x⇔ 1 - y1)2  + (x2 -  y2)2  = 0

                 (x⇔ 1 – y1)2  = 0 and (x2 – y2)2 = 0  x⇔ 1 – y1  = 0 and x2 – y2 = 0   x⇔ 1 =  y1  and x2  =  y2

                                          x = y⇔

(iii) d(x, y) =   [(x1 – y1)2  + (x2 – y2)2]1/2 =   [(y1 - x1)2  + (y2 - x2 )2]1/2  =  d(y, x)

(iv) d(x, y) =   [(x1 – y1)2  + (x2 – y2)2]1/2 =

            let z = (z1, z2) then  d(x, y) = 

                                                  ≤ 

                                                       

                                                                                                    (using Minkowski’s Ineq.)
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           =  d(x, z) +  d(z, y)

thus  d(x, y)   ≤   d(x, z) +  d(z, y)

EXERCISE: Show that (X, d) is a metric space where,  X = R3  ,   d(x, y) =  

EXAMPLE: (4) If d is metric on a set X≠ϕ then d*(x, y) = min{1, d(x, y)}is also a metric on X.

SOLUTION: 

 Given that d is a metric on X so we have -

(i) d(x, y)≥0

(ii) d(x, y) = 0   x = y⇔

(iii) d(x, y) = d(y, x)

(iv) d(x, y)  ≤ d(x, z) + d(z, y) ,  x, y, z ∀ є X

 now to show  d* is metric on X 

(i)* since 1 > 0 and d(x, y) ≥0   x, y ∀ є X      { using  (i)}

  min{1, d(x, y)} ≥0    d⟹ ⟹ *(x, y) ≥ 0

(ii)*  d*(x, y) = 0   min{1, d(x, y)} = 0  d(x, y) = 0  x = y               {since 1 ≠ 0 and using (ii)}⇔ ⇔ ⇔

(iii)* d*(x, y) = min{1, d(x, y)} = min{1, d(y, x)} = d*(y, x)                      {using (iii)}

(iv)* Let z є X  from d*(x, y) = min{1, d(x, y)} we have d*(x, y) ≤ d(x, y)    x, y ∀ є X        .....     (#)  

  case I : if either d(x, z) ≥ 1 or d(z, y) ≥ 1  either min{1, d(x, z)} = 1 or min{1, d(z, y)} = 1⟹
                                                                    either d⟹ *(x, z) = 1 or d*(z, y) = 1

                                                                   so d*(x, z) + d*(z, y) ≥ 1 ≥ d*(x, y)

   case II: if d(x, z) <1 and d(z, y) < 1 then min{1, d(x, z)} = d(x, z) and min{1, d(z, y)} = d(z, y)

                                                                    d⟹ *(x, z) = d(x, z)  and d*(z, y) = d(z, y)       ......  (##)

now,          d*(x, y) ≤ d(x, y)                                          (using equation (#))

                               ≤ d(x, z) + d(z, y)                           (using (iv))

                               = d*(x, z) +  d*(z, y)                        (using equation (##))

thus, in both cases    d*(x, y) ≤ d*(x, z) +  d*(z, y),   x, y, z ∀ є X  
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OPEN SPHERE ( OPEN BALL): Let X be a non empty set and d is a metric on X then open 
sphere 

of radius r > 0 ( positive real number)  centred at x0 є X denoted and defined by-

 S(x0, r) = Sr(x0) = {x є X: d(x0, x) < r}

CLOSED SPHERE ( CLOSED BALL): Let X be a non empty set and d is a metric on X then 
open sphere 

of radius r > 0 ( positive real number)  centred at x0 є X denoted and defined by-

 S[x0, r] = Sr[x0] = {x є X:  d(x0, x) ≤ r}

EXAMPLE (1): Find open and closed sphere in usual meric space (R, d).

SOLUTION:

Since we know  that usual metric on R is defined by d(x, y) = |x – y|

let x0  є R be the centre and  r > 0 be a radius.

Open shpere  S(x0, r)= {x є R:  d(x0, x) < r} = {x є R : |x0  - x|< r}         ( by def. of d)

                                 = {x є R : | x - x0 |< r}  =  {x є R : - r < x - x0 < r}

                                 = {x є R: x0 - r < x < x0 + r} =  (x0 – r,  x0  + r)

                                     

thus we can see that open sphere in usual metric on R is an open interval with end point  x0 – r and  
x0  + r.

Similarly, closed sphere S[x0, r] =  {x є R: x0 - r ≤  x ≤ x0  + r} =  [x0 – r,  x0  + r] is closed  

EXAMPLE (2) Find open and closed sphere in discrete metric space (X, d).

SOLUTION:

 To find open sphere : given that d is a discrete metric on X i.e. 

                                                                0 ,          x = y

                          d(x, y) =  

                                                                1 ,      x ≠ y     ∀  x, y    є X

let  x0  є  X and  r >0 then  S(x0, r) = {x є X: d(x0, x) < r}

case I: if 0 < r < 1 then  S(x0, r) = {x є X: d(x0, x) = 0} because d(x, y) either                                      
 S(x⟹ 0, r) = {x є X: x = x0 }   S(x⟹ 0, r) = { x0 }                                    [using (ii) property of 

metric]
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case II: if r ≥ 1 then S(x0, r) = {x є X: d(x0, x) < 1}  = {x є X: d(x0, x) = 0} = {x є X: x = x0 } = { x0 }

thus  ∀  r > 0, every singleton is an open sphere in discrete metric space.

To find closed sphere : 

Case I : if  0 < r < 1 then  S[x0, r] = {x є X:  d(x0, x) ≤ r} = {x є X:  d(x0, x) = 0}          [since  r <1 ]

                                                      = {x є X: x = x0 }  = { x0 }                                        [(ii) property]

Case II: if  r ≥ 1 then S[x0, r] = {x є X:  d(x0, x) ≤ 1} = X                                            [ by def. of  d ]

thus ∀  r > 0,  every singleton and whole X are closed sphere in discrete metric space.

EXAMPLE (3) Find open and closed sphere of unit radius centred at origin in the metric space 

(R2,, d) where    d(x, y) =    [(x1 – y1)2  + (x2 – y2)2]1/2 ,  x = (x1 , x2), y = (y1, y2)  є R2

SOLUTION : 

To find open sphere: given that centre  x0  =  (0, 0) and radius r = 1

so, S(x0, r) = {x є X: d(x0, x) < r}  S((0, 0), 1) =  { x є X: d((0, 0), (x⟹ 1, x2)) < 1 }        

                                                                              =  { x є X: [(x1 – 0)2  + (x2 – 0)2]1/2 < 1 }        

                                                                               =  { x є X: x1
2  + x2 

2 < 1 }   

=set of all points within a circle of radius 1 centred at origin except poitns on circumference             

            

To find closed sphere: 

                                   in the similar way, closed sphere ,  S[(0, 0), 1] =    { x є X: x1
2  + x2 

2 ≤ 1 }

X2

X1

(0, 0)
1

    S((0, 0), 1) 

All points within the circle are included in the 
open sphere.

1

(0, 0)
S[(0, 0), 1]

X1

X2

All points within and on the 
circle are included in closed 
sphere.



Exercixe: Show that (R2, d), where d(x, y) = |x1-y1| + |x2-y2|    ∀ x = (x1, x2), y = (y1, y2)  є R2..

Also find open and closed sphere of unit radius centred at origin in this metric space.

NEIGHBOURHOOD (nbd) OF A POINT:  let (X, d) be a metric space and     N X   then N is said 

to be nbd of x є X if  there exist an open sphere of centred at x of radius r > 0 such that 

           S(x, r) N 

Remark: If for all r >0 ,  S(x, r) N then N is not nbd of x.

Exanple:1(a). In usual metric space on R, let  N = (1, 2) R and x = 1.5 check whether N is a 
neighborhood of the point x or not.

solution: if we choose radius r = 0.1 >0 then open sphere centred at x = 1.5  
                       S(1.5, 0.1)  S(1.5, 0.1) = (1.5-0.1, 1.5+0.1) = (1.4, 1.6) (1, 2) = N

so (1, 2) is a nbd of  1.5

1(b). If N = [1, 2) and x = 1 check N is a nbd of x or not.

solution: if we choose any radius r >0 then open sphere S(1, r) = (1-r, 1+r) is not contained in [1, 2)

 i.e.  (1-r, 1+r) [1, 2)

so  [1, 2) is not a nbd of 1

OPEN SET: let (X,d) be a metric space and G X then is G is said to be an open set if it is 
nbd of its all points.

i.e. G is said to be an open set of X if    ∀ x є G there exits r >0 such that  S(x, r) N.
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EXAMPLES: In usual metric space on R, the following subsets of R are open or not ?

(a) N ( set of natural numbers)

(b) Z ( set of integers)

(c) Q ( set of rational numbers)

(d) Qc (set of irrational numbers)

(e) R ( set of real numbers)

Solution: (a) Let x be any natural no. then for any r >0  S(x, r) = (x-r, x+r) N.

because  (x-r, x+r) also contains non-natural nos.Thus N is not nbd of its all points , hence not an 
open set.

(b)  Let x be any integer no. then for any r >0  S(x, r) = (x-r, x+r) Z 

because  (x-r, x+r) also contains non-integer  nos.Thus Z is not nbd of its all points , hence not an 
open set.

(c) Let x be any rational  no. then for any r >0  S(x, r) = (x-r, x+r) Q

because  (x-r, x+r) also contains irrational nos.Thus Q is not nbd of its all points , hence not an 
open set.

(d) same as part (c)

(e) Let x be any real  no. then there exists r >0 ( even for every  r >0),      S(x, r) = (x-r, x+r) R 
beacuse (x-r, x+r) contions infinitely many rational and irrational points, so contained in R. Thus R 
is nbd of its all its points, hence R is an open set.

PROPERTIES OF OPEN SET: Let (X, d) be a metric space-

(a) ϕ is always an open set in X

proof:  ϕ is trivially an open set or we can say that there is no point in  ϕ for which it is not a nbd, 
hence an open set.

(b) X is always open in X.

Proof:  Let x be any point of X then there exists r >0 ( even for every  r >0)  s. t. 

S(x, r) R, hence X is always an open set.

(c)Union of arbitrary collection of open sets is open.

Proof: Let { Gλ : λ є I }, where I is an index set, be an arbitrary collection of open sets.

To show is an open set, let  x є  be an arbitrary point

                                                        x є   G⟹ λ0,           for some λ0  є I

since   Gλ0 is an open set so it  is a neighbourhood of each of its points






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so there exist r >0 such that  x є S(x, r) Gλ0 , for some λ0  є I

                                                    ⟹ S(x, r)

                                                    ⟹ is a nbd of x

 

                     since x is arbitrary so  is a nbd of each of its points 

hence is an open set.

(d) Intersection of finite collection of open sets is open.

In particular, let G1  and G2 be two open  set then G1∩G2  is open.

Proof: to show  G1∩G2  is an open set, let  x є  G1∩G2  be an arbitrary point

      x є G⟹ 1 and x є G2

since G1  and G2 are open so there exist r1 >0 and r2 >0 s.t.   x є S(x,r1) G1 and S(x,r2) G2         

 choose min{r1, r2} = r (say)>0

then  S(x,r) G1  and S(x,r) G2   ⟹ S(x,r)        G1 ∩G2    

since x is arbitrary , so we can say that for all  x є G1 ∩G2   there exists r>0 s.t.    S(x,r) G1∩G2  

  G⟹ 1∩G2  is nbd of its all points

  G⟹ 1∩G2  is an open set. 

Remark: Intersection of arbitrary collection of open sets need not be an open set.

Example: Consider usual metric on R and { (-1/n, 1/n) : n є N } be  collection of open sets in R

as open intervals in usual metric are open .  

 = {0}                                                                         

   

to show {0}  is not open, let 0 є{0}  then for any r >0, (0-r, 0+r) = (-r, +r) {0}    

  {0} is not nbd of 0, hence not an open set.⟹
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THEROEM: In any metric space, every open sphere is an open set.

Proof:Let be (X, d) be a metric space and S(x, r) be an  open sphere centred at x of radius 
r >0

S(x, r)  = { y є X : d(x, y) < r }

Let y є S(x, r)  be an arbitrary point

so d(x, y) < r   r - ⟹  d(x, y) > 0

let r' = r -  d(x, y)    ............                   (i)

to show    S(y, r') S(x, r)

let z є  S(y, r')  d(z, y) < ⟹  r' 

  d(z, y)  < ⟹  r -  d(x, y)                             [ using (i) ]

  ⟹  d(z, y) + d(x, y) <  r  or d(x, y) + d(y, z)<  r          [since d(z, y) = d(y, z)]

 d(x, z)⟹ <  r  ⟹   z є S(x, r)         S(y, r⟹ ') S(x, r)  

Thus  S(x, r) is a nbd of y which is arbitrary, hence  S(x, r) is nbd of its all points.

therefore   S(x, r) is an open set. 

THEOREM: Let (X, d) be a metric space and G be a subset of X then G  is open if and 
only if G is union of open spheres.

Proof: Case I: Let G is open

 G is nbd of each of its points i.e. ⟹   ∀ x є G there exists rx  >0 s. t. S(x, rx ) G  so

  G                                 .......(i)

since  x є S(x, rx ) ⟹ {x}      S(x, rx )          

 

  ⟹

                                     from (i) and (ii), G   = 

 G is Union of open spheres.⟹

Case II: let G is Union of open spheres.:
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                                                     G   =  ⟹

Since we know that open is sphere is an open set and arbitrary Union of open sets  is 

open, 

hence G is open.

CLOSED SET: 

Let (X,d) be a metric space then a subset F of X is said to be closed if its complement i.e.  

Fc is open.

Examples:In usual metric space on R

(i) [a, b] is closed.

since [a, b]c = (-∞, a) (b, ∞)

here,  (-∞, a)  and  (b, ∞) are open so       (-∞, a) (b, ∞) is open 

hence [a, b]c  is open  ⟹  [a, b] is closed.

(ii) Set of natural no. N is closed.

since N = {1, 2, 3,........} and Nc = R - N = (-∞, 1) (1, 2) (2, 3) ...........

                                                             

                                                              = (-∞, 1)

since for all n є N , (n, n+1) is open also (-∞, 1) is open and we know that arbitrary union of 
open sets is open , hence

                                                                 (-∞, 1)

(iii) Similarly we can show Z ( set of all integers) is closed.

(iv)Q and Qc are not closed as its complements are not open.

( refer to examples of open set)
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PROPERTIES OF CLOSEDSET:  Let (X, d) be a metric space then-

(a). ϕ set is always closed in X

Proof: since we ϕc = X  and X is open ( refer to property of open set)

so  ϕc  is open , hence ϕ is closed.

(b). X is always closed in X

since Xc  = ϕ and ϕ is open,  so Xc  is open and hence X is closed.

(c). Intersection of arbitrary collection of cloesd sets is closed.

Proof: Let { Fλ : λ є I }, where I is an index set, be a collection of closed sets.

to show is a closed set, 

= 

since Fλ  is closed for all  λ є I,  so Fλ
c  is open  for all  λ є I 

also we know that union of arbitrary collection of open sets is open 

                                     so is    open              ⟹                                  

                                      

                                                                   ⟹ is closed

(d).Union of finite collection of closed sets is closed.

In particular, let F1 and F2 are two closed sets then intersection of F1 and F2  is closed.

Proof: by Demorgan's law, ( F1 F2 )c = F1
c
  ∩  F2

c 

since F1 and F2 are closed    ⟹ F1
c
   and  F2

c  are open 

                                           ⟹ F1
c
  ∩  F2

c is open      [ since finite intersection of open sets is open ]

                                         ⟹ (F1   F2 )c is open     ⟹ F1       F2 is closed.
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Remark:  Union of arbitrary collection of closed sets need not be closed.

Example: In usual metric space on R, consider the collection { [1/n , 1] : n є N } so

 = (0 , 1] 

now, since (0, 1]c =   (-∞, 0] (1, ∞) 

here  (-∞, 0] is not nbd of 0         [ check it ] 

     ⟹ (-∞, 0] is not nbd of its all points hence not open 

  ⟹  (-∞, 0] (1, ∞) is not open   ⟹ (0, 1]c 
  is not open  ⟹ (0, 1] 

  is not closed

hence the statement. 

n N

[1/ n,1]








	so there exist r >0 such that x є S(x, r) Gλ0 , for some λ0 є I

