B.Sc $3^{\text {rd }}$ YEAR
 PAPER - ${ }^{\text {ST }}$, UNIT- (IV)
 \{ METRIC SPACE \}

METRIC:

Let $\mathrm{X} \neq \phi$ be set then a function $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{R}$ (set of real numbers) is called metric on X if it satisfies the following conditions -
(i) $\mathrm{d}(\mathrm{x}, \mathrm{y}) \geq 0$
(Non-negativity)
(ii) $d(x, y)=0 \Leftrightarrow x=y$
(iii) $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$
(Symmetry)
(iv) $\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y}), \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$
(Triangle inequality)
Note: d is also called distance function.

METRIC SPACE:

The pair (X, d) is called metric space.
EXAMPLE: (1)
Let $\mathrm{X}=\mathrm{R}, \mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{R}$ defined by $\mathrm{d}(\mathrm{x}, \mathrm{y})=|\mathrm{x}-\mathrm{y}|$ then d is a metric on X .

SOLUTION:

(i) let $\mathrm{x}, \mathrm{y} \in \mathrm{R}$ then $\mathrm{x}-\mathrm{y} \in \mathrm{R} \Longrightarrow|\mathrm{x}-\mathrm{y}| \geq 0 \Longrightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y}) \geq 0$
(ii) $d(x, y)=0 \Leftrightarrow|x-y|=0 \Leftrightarrow x-y=0 \Leftrightarrow x=y$
(iii) $d(x, y)=|x-y|=|-(y-x)|=|y-x|=d(y, x)$
(iv)let $\mathrm{z} \in \mathrm{R}, \mathrm{d}(\mathrm{x}, \mathrm{y})=|\mathrm{x}-\mathrm{y}|=|\mathrm{x}-\mathrm{z}+\mathrm{z}-\mathrm{y}| \leq|\mathrm{x}-\mathrm{z}|+|\mathrm{z}-\mathrm{y}|=\mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y})$
\{by triangle inequality in modulus\}
Thus d is a metric on R.
REMARK: The above metric is called usual metric on \mathbf{R}.
EXAMPLE: (2) Let X be a non empty s et and $\mathrm{d}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{lll}0, & \mathrm{x}=\mathrm{y} \\ 1, & \mathrm{x} \neq \mathrm{y} & \forall \mathrm{x}, \mathrm{y}\end{array} \mathrm{\in X}\right.$ then d is a metric and is called discrete meric on \mathbf{X}. SOLUTION:
(i) From the definition of d, for all $x, y \in X, d(x, y)$ is either 0 or 1 hence $d(x, y) \geq 0$
(ii) $d(x, y)=0 \Leftrightarrow x=y$
(by def. of d)
(iii) let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ then $\mathrm{x}=\mathrm{y}$ or $\mathrm{x} \neq \mathrm{y}$
if $x=y \Longrightarrow y=x$, so $d(x, y)=d(y, x)$
if $x \neq y \Longrightarrow y \neq x$, so $d(x, y)=d(y, x)$
in both cases $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$
(iv) let $\mathrm{z} \in \mathrm{X}$
case I: if $\mathrm{x}=\mathrm{y}$ then either $\mathrm{x}=\mathrm{y}=\mathrm{z}$ or $\mathrm{x}=\mathrm{y} \neq \mathrm{z}$

$$
\begin{aligned}
& \Longrightarrow \text { either } \mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{x}, \mathrm{z})=\mathrm{d}(\mathrm{z}, \mathrm{y})=0 \text { or } \mathrm{d}(\mathrm{x}, \mathrm{y})=0 \text { and } \mathrm{d}(\mathrm{x}, \mathrm{z})=\mathrm{d}(\mathrm{z}, \mathrm{y})=1 \\
& \Longrightarrow \text { either } \mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y}) \quad \text { or } \mathrm{d}(\mathrm{x}, \mathrm{y})<\mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

cases II: if $\mathrm{x} \neq \mathrm{y}$ then either $\mathrm{x} \neq \mathrm{y}=\mathrm{z}$ or $\mathrm{x} \neq \mathrm{y} \neq \mathrm{z}$
\Longrightarrow either $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{x}, \mathrm{z})=1$ and $\mathrm{d}(\mathrm{z}, \mathrm{y})=0$ or $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{z}, \mathrm{y})=1$
\Longrightarrow either $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{z}, \mathrm{y}) \quad$ or $\mathrm{d}(\mathrm{x}, \mathrm{y})<\mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{z}, \mathrm{y})$
so, $\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{z}, \mathrm{y})$
thus in either case $\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{z}, \mathrm{y}) \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$, hence d is a metric on X

NOTE:

MINKOSWKI INQUALITY: if $\mathrm{p} \geq 1, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$ are positive real numbers $\quad \forall \mathrm{i} \in \mathrm{N}$

$$
\left[\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{p}\right]^{1 / p} \leq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n} y_{i}^{p}\right)^{1 / p}
$$

EXAMPLE: (3) Let $\mathrm{X}=\mathrm{R}^{2}, \mathrm{~d}(\mathrm{x}, \mathrm{y})=\left[\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{x}_{2}-\mathrm{y}_{2}\right)^{2}\right]^{1 / 2}, \mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \in \mathrm{R}^{2}$ then d is a metric on R^{2}.

SOLUTION:

(i) since $\left.\quad\left(x_{1}-y_{1}\right)^{2} \geq 0, x_{2}-y_{2}\right)^{2} \geq 0 \Longrightarrow\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} \geq 0$

$$
\Longrightarrow\left[\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}\right]^{1 / 2} \geq 0 \Longrightarrow d(x, y) \geq 0
$$

(ii) $\mathrm{d}(\mathrm{x}, \mathrm{y})=0 \Leftrightarrow\left[\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{x}_{2}-\mathrm{y}_{2}\right)^{2}\right]^{1 / 2}=0 \Leftrightarrow\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{x}_{2}-\mathrm{y}_{2}\right)^{2}=0$

$$
\begin{aligned}
& \Leftrightarrow\left(x_{1}-y_{1}\right)^{2}=0 \text { and }\left(x_{2}-y_{2}\right)^{2}=0 \Leftrightarrow x_{1}-y_{1}=0 \text { and } x_{2}-y_{2}=0 \Leftrightarrow x_{1}=y_{1} \text { and } x_{2}=y_{2} \\
& \quad \Leftrightarrow x=y
\end{aligned}
$$

(iii) $d(x, y)=\left[\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}\right]^{1 / 2}=\left[\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-x_{2}\right)^{2}\right]^{1 / 2}=d(y, x)$
(iv) $d(x, y)=\left[\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}\right]^{1 / 2}=\left[\sum_{i=1}^{2}\left(x_{i}+y_{i}\right)^{2}\right]^{1 / 2}$

$$
\text { let } \begin{aligned}
& \mathrm{z}=\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \text { then } \mathrm{d}(\mathrm{x}, \mathrm{y})=\left[\sum_{\mathrm{i}=1}^{2}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{z}_{\mathrm{i}}+\mathrm{z}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}\right)^{2}\right]^{1 / 2} \\
& \\
& \leq\left(\sum_{\mathrm{i}=1}^{2}\left(\mathrm{x}_{\mathrm{i}}-z_{i}\right)^{2}\right)^{1 / 2}+\left(\sum_{\mathrm{i}=1}^{2}\left(\mathrm{z}_{\mathrm{i}}-y_{i}\right)^{2}\right)^{1 / 2}
\end{aligned}
$$

$$
=\mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y})
$$

thus $d(x, y) \leq d(x, z)+d(z, y)$

EXERCISE: Show that (X, d) is a metric space where, $X=R^{3}, d(x, y)=\left[\sum_{i=1}^{3}\left(x_{i}-y_{i}\right)^{2}\right]^{1 / 2}$
EXAMPLE: (4) If d is metric on a set $\mathrm{X} \neq \phi$ then $\mathrm{d}^{*}(\mathrm{x}, \mathrm{y})=\min \{1, \mathrm{~d}(\mathrm{x}, \mathrm{y})\}$ is also a metric on X .
SOLUTION:
Given that d is a metric on X so we have -
(i) $d(x, y) \geq 0$
(ii) $\mathrm{d}(\mathrm{x}, \mathrm{y})=0 \Leftrightarrow \mathrm{x}=\mathrm{y}$
(iii) $d(x, y)=d(y, x)$
(iv) $\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y}), \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$
now to show d^{*} is metric on X
(i) ${ }^{*}$ since $1>0$ and $d(x, y) \geq 0 \quad \forall x, y \in X \quad\{$ using (i) $\}$
$\Longrightarrow \min \{1, \mathrm{~d}(\mathrm{x}, \mathrm{y})\} \geq 0 \Longrightarrow \mathrm{~d}^{*}(\mathrm{x}, \mathrm{y}) \geq 0$
$\left(\right.$ (ii) ${ }^{*} d^{*}(x, y)=0 \Leftrightarrow \min \{1, d(x, y)\}=0 \Leftrightarrow d(x, y)=0 \Leftrightarrow x=y$
\{since $1 \neq 0$ and using (ii) $\}$
(iii) ${ }^{*} d^{*}(x, y)=\min \{1, d(x, y)\}=\min \{1, d(y, x)\}=d^{*}(y, x)$
\{using (iii)\}
(iv) ${ }^{*}$ Let $\mathrm{z} \in \mathrm{X}$ from $\mathrm{d}^{*}(\mathrm{x}, \mathrm{y})=\min \{1, \mathrm{~d}(\mathrm{x}, \mathrm{y})\}$ we have $\mathrm{d}^{*}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y}) \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$
case I : if either $\mathrm{d}(\mathrm{x}, \mathrm{z}) \geq 1$ or $\mathrm{d}(\mathrm{z}, \mathrm{y}) \geq 1 \Longrightarrow$ either $\min \{1, \mathrm{~d}(\mathrm{x}, \mathrm{z})\}=1$ or $\min \{1, \mathrm{~d}(\mathrm{z}, \mathrm{y})\}=1$

$$
\begin{aligned}
& \Longrightarrow \text { either } d^{*}(x, z)=1 \text { or } d^{*}(z, y)=1 \\
& \text { so } d^{*}(x, z)+d^{*}(z, y) \geq 1 \geq d^{*}(x, y)
\end{aligned}
$$

case II: if $\mathrm{d}(\mathrm{x}, \mathrm{z})<1$ and $\mathrm{d}(\mathrm{z}, \mathrm{y})<1$ then $\min \{1, \mathrm{~d}(\mathrm{x}, \mathrm{z})\}=\mathrm{d}(\mathrm{x}, \mathrm{z})$ and $\min \{1, \mathrm{~d}(\mathrm{z}, \mathrm{y})\}=\mathrm{d}(\mathrm{z}, \mathrm{y})$

$$
\Longrightarrow \mathrm{d}^{*}(\mathrm{x}, \mathrm{z})=\mathrm{d}(\mathrm{x}, \mathrm{z}) \text { and } \mathrm{d}^{*}(\mathrm{z}, \mathrm{y})=\mathrm{d}(\mathrm{z}, \mathrm{y})
$$

now, $\quad d^{*}(x, y) \leq d(x, y)$
(using equation (\#))
$\leq \mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y}) \quad$ (using (iv))
$=d^{*}(x, z)+d^{*}(\mathrm{z}, \mathrm{y}) \quad$ (using equation (\#\#))
thus, in both cases $\mathrm{d}^{*}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}^{*}(\mathrm{x}, \mathrm{z})+\mathrm{d}^{*}(\mathrm{z}, \mathrm{y}), \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$

OPEN SPHERE (OPEN BALL): Let X be a non empty set and d is a metric on X then open sphere
of radius $r>0$ (positive real number) centred at $x_{0} \in X$ denoted and defined by-

$$
\mathrm{S}\left(\mathrm{x}_{0}, \mathrm{r}\right)=\mathrm{S}_{\mathrm{r}}\left(\mathrm{X}_{0}\right)=\left\{\mathrm{x} \in \mathrm{X}: \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}\right)<\mathrm{r}\right\}
$$

CLOSED SPHERE (CLOSED BALL): Let X be a non empty set and d is a metric on X then open sphere
of radius $\mathrm{r}>0$ (positive real number) centred at $\mathrm{x}_{0} \in \mathrm{X}$ denoted and defined by-

$$
S\left[x_{0}, r\right]=\operatorname{Sr}\left[x_{0}\right]=\left\{x \in X: d\left(x_{0}, x\right) \leq r\right\}
$$

EXAMPLE (1): Find open and closed sphere in usual meric space (R, d).

SOLUTION:

Since we know that usual metric on R is defined by $d(x, y)=|x-y|$
let $x_{0} \in R$ be the centre and $r>0$ be a radius.
Open shpere $S\left(x_{0}, r\right)=\left\{x \in R: d\left(x_{0}, x\right)<r\right\}=\left\{x \in R:\left|x_{0}-x\right|<r\right\} \quad$ (by def. of d)

$$
\begin{aligned}
& =\left\{x \in R:\left|x-x_{0}\right|<r\right\}=\left\{x \in R:-r<x-x_{0}<r\right\} \\
& =\left\{x \in R: x_{0}-r<x<x_{0}+r\right\}=\left(x_{0-r}, x_{0}+r\right)
\end{aligned}
$$

thus we can see that open sphere in usual metric on R is an open interval with end point $\mathrm{x}_{0-\mathrm{r}} \mathrm{r}$ and $\mathrm{x}_{0}+\mathrm{r}$.
Similarly, closed sphere $S\left[x_{0}, r\right]=\left\{x \in R: x_{0}-r \leq x \leq x_{0}+r\right\}=\left[x_{0}-r, x_{0}+r\right]$ is closed

EXAMPLE (2) Find open and closed sphere in discrete metric space (X, d).

SOLUTION:

To find open sphere : given that d is a discrete metric on X i.e.

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{ll}
0, & x=y \\
1, & \mathrm{x} \neq \mathrm{y}
\end{array} \quad \forall \mathrm{x}, \mathrm{y} \quad \in \mathrm{X}\right.
$$

let $x_{0} \in X$ and $r>0$ then $S\left(x_{0}, r\right)=\left\{x \in X: d\left(x_{0}, x\right)<r\right\}$
case I: if $0<r<1$ then $S\left(x_{0}, r\right)=\left\{x \in X: d\left(x_{0}, x\right)=0\right\}$ because $d(x, y)$ either
$\Longrightarrow S\left(x_{0}, r\right)=\left\{x \in X: x=x_{0}\right\} \Longrightarrow S\left(x_{0}, r\right)=\left\{x_{0}\right\} \quad$ [using (ii) property of metric]
case II: if $r \geq 1$ then $S\left(x_{0}, r\right)=\left\{x \in X: d\left(x_{0}, x\right)<1\right\}=\left\{x \in X: d\left(x_{0}, x\right)=0\right\}=\left\{x \in X: x=x_{0}\right\}=\left\{x_{0}\right\}$ thus $\forall r>0$, every singleton is an open sphere in discrete metric space.

To find closed sphere :

Case I : if $0<r<1$ then $S\left[x_{0}, r\right]=\left\{x \in X: d\left(x_{0}, x\right) \leq r\right\}=\left\{x \in X: d\left(x_{0}, x\right)=0\right\}$

$$
=\left\{x \in X: x=x_{0}\right\}=\left\{x_{0}\right\}
$$

[(ii) property]
Case II: if $r \geq 1$ then $S\left[x_{0}, r\right]=\left\{x \in X: d\left(x_{0}, x\right) \leq 1\right\}=X$
thus $\forall r>0$, every singleton and whole X are closed sphere in discrete metric space.

EXAMPLE (3) Find open and closed sphere of unit radius centred at origin in the metric space $\left(R^{2}, d\right)$ where $d(x, y)=\left[\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}\right]^{1 / 2}, x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in R^{2}$ SOLUTION :
To find open sphere: given that centre $\mathrm{x}_{0}=(0,0)$ and radius $\mathrm{r}=1$

$$
\text { so, } \begin{aligned}
S\left(x_{0}, r\right)=\left\{x \in X: d\left(x_{0}, x\right)<r\right\} \Longrightarrow S((0,0), 1) & =\left\{x \in X: d\left((0,0),\left(x_{1}, x_{2}\right)\right)<1\right\} \\
& =\left\{x \in X:\left[\left(x_{1}-0\right)^{2}+\left(x_{2}-0\right)^{2}\right]^{1 / 2}<1\right\} \\
& =\left\{x \in X: x_{1}{ }^{2}+x_{2}{ }^{2}<1\right\}
\end{aligned}
$$

$=$ set of all points within a circle of radius 1 centred at origin except poitns on circumference

To find closed sphere:
in the similar way, closed sphere , $\mathrm{S}[(0,0), 1]=\left\{\mathrm{x} \in \mathrm{X}: \mathrm{X}_{1}{ }^{2}+\mathrm{X}_{2}{ }^{2} \leq 1\right\}$

Exercixe: Show that $\left(R^{2}, d\right)$, where $d(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right| \forall x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in R^{2}$. Also find open and closed sphere of unit radius centred at origin in this metric space.

NEIGHBOURHOOD (nbd) OF A POINT: let (X, d) be a metric space and $N \subseteq X$ then N is said to be nbd of $x \in X$ if there exist an open sphere of centred at x of radius $r>0$ such that

$$
S(x, r) \subseteq N
$$

Remark: If for all $r>0, S(x, r) \not \subset N$ then N is not nbd of x.
Exanple:1(a). In usual metric space on R, let $N=(1,2) \subseteq R$ and $x=1.5$ check whether N is a neighborhood of the point x or not.
solution: if we choose radius $r=0.1>0$ then open sphere centred at $x=1.5$

$$
S(1.5,0.1) S(1.5,0.1)=(1.5-0.1,1.5+0.1)=(1.4,1.6) \subseteq(1,2)=N
$$

so $(1,2)$ is a nbd of 1.5
$\mathbf{1}(\mathbf{b})$. If $\mathrm{N}=[1,2)$ and $\mathrm{x}=1$ check N is a nbd of x or not.
solution: if we choose any radius $r>0$ then open sphere $S(1, r)=(1-r, 1+r)$ is not contained in $[1,2)$ i.e. $(1-r, 1+r) \not \subset[1,2)$
so $[1,2)$ is not a nbd of 1

OPEN SET: let (X, d) be a metric space and $G \subseteq X$ then is G is said to be an open set if it is nbd of its all points.
i.e. G is said to be an open set of X if $\forall x \in G$ there exits $r>0$ such that $S(x, r) \subseteq N$.

EXAMPLES: In usual metric space on R , the following subsets of R are open or not ?
(a) N (set of natural numbers)
(b) Z (set of integers)
(c) Q (set of rational numbers)
(d) Q^{c} (set of irrational numbers)
(e) R (set of real numbers)

Solution: (a) Let x be any natural no. then for any $r>0 S(x, r)=(x-r, x+r) \not \subset N$.
because ($x-r, x+r$) also contains non-natural nos.Thus N is not nbd of its all points, hence not an open set.
(b) Let x be any integer no. then for any $r>0 S(x, r)=(x-r, x+r) \not \subset Z$
because ($\mathrm{x}-\mathrm{r}, \mathrm{x}+\mathrm{r}$) also contains non-integer nos.Thus Z is not nbd of its all points, hence not an open set.
(c) Let x be any rational no. then for any $\mathrm{r}>0 \mathrm{~S}(\mathrm{x}, \mathrm{r})=(\mathrm{x}-\mathrm{r}, \mathrm{x}+\mathrm{r}) \not \subset \mathrm{Q}$
because ($x-r, x+r$) also contains irrational nos.Thus Q is not nbd of its all points, hence not an open set.
(d) same as part (c)
(e) Let x be any real no. then there exists $r>0$ (even for every $r>0$), $\quad S(x, r)=(x-r, x+r) \subseteq R$ beacuse ($x-r, x+r$) contions infinitely many rational and irrational points, so contained in R. Thus R is nbd of its all its points, hence R is an open set.

PROPERTIES OF OPEN SET: Let (X, d) be a metric space-
(a) ϕ is always an open set in X
proof: ϕ is trivially an open set or we can say that there is no point in ϕ for which it is not a nbd, hence an open set.
(b) X is always open in X .

Proof: Let x be any point of X then there exists $\mathrm{r}>0$ (even for every $\mathrm{r}>0$) s. t.
$S(x, r) \subseteq R$, hence X is always an open set.
(c)Union of arbitrary collection of open sets is open.

Proof: Let $\left\{G_{\lambda}: \lambda \in I\right\}$, where I is an index set, be an arbitrary collection of open sets.
To show $\bigcup_{\lambda \in \mathrm{I}} \mathrm{G}_{\lambda}$ is an open set, let $\mathrm{x} \in \bigcup_{\lambda \in \mathrm{I}} \mathrm{G}_{\lambda}$ be an arbitrary point

$$
\Longrightarrow \mathrm{x} \in \mathrm{G}_{\lambda 0,} \quad \text { for some } \lambda_{0} \in \mathrm{I}
$$

since $G_{\gamma_{0}}$ is an open set so it is a neighbourhood of each of its points
so there exist $r>0$ such that $x \in S(x, r) \subseteq G_{\lambda_{0}}$, for some $\lambda_{0} \in I$

$$
\begin{aligned}
& \Longrightarrow \mathrm{S}(\mathrm{x}, \mathrm{r}) \subseteq \bigcup_{\lambda \in \mathrm{I}} \mathrm{G}_{\lambda} \quad \text { Since } \mathrm{G}_{\lambda 0} \subseteq \bigcup_{\lambda \in \mathrm{I}} \mathrm{G}_{\lambda} \\
& \Longrightarrow \bigcup_{\lambda \in \mathrm{I}} \mathrm{G}_{\lambda} \text { is a nbd of } \mathrm{x}
\end{aligned}
$$

since x is arbitrary so $\bigcup_{\lambda \in \mathrm{I}} \mathrm{G}_{\lambda}$ is a nbd of each of its points hence $\bigcup_{\lambda \in I} G_{\lambda}$ is an open set.
(d) Intersection of finite collection of open sets is open.

In particular, let G_{1} and G_{2} be two open set then $\mathrm{G}_{1} \cap \mathrm{G}_{2}$ is open.
Proof: to show $\mathrm{G}_{1} \cap \mathrm{G}_{2}$ is an open set, let $\mathrm{x} \in \mathrm{G}_{1} \cap \mathrm{G}_{2}$ be an arbitrary point $\Longrightarrow \mathrm{x} \in \mathrm{G}_{1}$ and $\mathrm{x} \in \mathrm{G}_{2}$
since G_{1} and G_{2} are open so there exist $r_{1}>0$ and $r_{2}>0$ s.t. $x \in S\left(x, r_{1}\right) \subseteq G_{1}$ and $S\left(x, r_{2}\right) \subseteq G_{2}$ choose $\min \left\{\mathrm{r}_{1}, \mathrm{r}_{2}\right\}=r($ say $)>0$
then $\mathrm{S}(\mathrm{x}, \mathrm{r}) \subseteq \mathrm{G}_{1}$ and $\mathrm{S}(\mathrm{x}, \mathrm{r}) \subseteq \mathrm{G}_{2} \Longrightarrow \quad \subseteq \mathrm{~S}(\mathrm{x}, \mathrm{r}) \quad \mathrm{G}_{1} \cap \mathrm{G}_{2}$
since x is arbitrary , so we can say that for all $x \in G_{1} \cap G_{2}$ there exists $r>0$ s.t. $\quad S(x, r) \subseteq G_{1} \cap G_{2}$
$\Longrightarrow G_{1} \cap G_{2}$ is nbd of its all points
$\Longrightarrow G_{1} \cap G_{2}$ is an open set.

Remark: Intersection of arbitrary collection of open sets need not be an open set.
Example: Consider usual metric on R and $\{(-1 / n, 1 / n): n \in N\}$ be collection of open sets in R as open intervals in usual metric are open .

Now,

$$
\bigcap_{\mathrm{n} \in \mathrm{~N}}(-1 / \mathrm{n}, 1 / \mathrm{n})=\{0\}
$$

to show $\{0\}$ is not open, let $0 \in\{0\}$ then for any $r>0,(0-r, 0+r)=(-r,+r) \not \subset\{0\}$
$\Longrightarrow\{0\}$ is not nbd of 0 , hence not an open set.

THEROEM: In any metric space, every open sphere is an open set.
Proof:Let be (X, d) be a metric space and $\mathrm{S}(\mathrm{x}, \mathrm{r})$ be an open sphere centred at x of radius $r>0$
$S(x, r)=\{y \in X: d(x, y)<r\}$
Let $y \in S(x, r)$ be an arbitrary point
so $d(x, y)<r \Longrightarrow r-d(x, y)>0$
let $r^{\prime}=r-d(x, y)$
to show $S\left(y, r^{\prime}\right) \subseteq S(x, r)$
let $z \in S\left(y, r^{\prime}\right) \Longrightarrow d(z, y)<r^{\prime}$
$\Longrightarrow \mathrm{d}(\mathrm{z}, \mathrm{y})<\mathrm{r}-\mathrm{d}(\mathrm{x}, \mathrm{y})$

$\Longrightarrow d(z, y)+d(x, y)<r$ or $d(x, y)+d(y, z)<r \quad[$ since $d(z, y)=d(y, z)]$
$\Longrightarrow d(x, z)<r \Longrightarrow z \in S(x, r) \Longrightarrow \quad S\left(y, r^{\prime}\right) \subseteq S(x, r)$
Thus $S(x, r)$ is a nbd of y which is arbitrary, hence $S(x, r)$ is nbd of its all points.
therefore $S(x, r)$ is an open set.
THEOREM: Let (X, d) be a metric space and G be a subset of X then G is open if and only if G is union of open spheres.

Proof: Case I: Let G is open
$\Longrightarrow G$ is nbd of each of its points i.e. $\forall x \in G$ there exists $r_{x}>0$ s. t. $S\left(x, r_{x}\right) \subseteq G$ so

$$
\begin{equation*}
\bigcup_{x \in G} S\left(x, r_{x}\right) \subseteq G \tag{i}
\end{equation*}
$$

since $x \in S\left(x, r_{x}\right) \Longrightarrow \quad \subseteq\{x\} \quad S\left(x, r_{x}\right)$
$\Longrightarrow \bigcup_{x \in G}\{x\} \subseteq \bigcup_{x \in G} S\left(x, r_{x}\right) \quad \Longrightarrow G \subseteq \bigcup_{x \in G} S\left(x, r_{x}\right)$

$$
\text { from (i) and (ii), } G=\bigcup_{x \in G} S\left(x, r_{x}\right)
$$

$\Longrightarrow G$ is Union of open spheres.

Case II: let G is Union of open spheres.:

$$
\Longrightarrow G=\bigcup_{x \in G} S\left(x, r_{x}\right)
$$

Since we know that open is sphere is an open set and arbitrary Union of open sets is open, hence G is open.

CLOSED SET:

Let (X, d) be a metric space then a subset F of X is said to be closed if its complement i.e. F^{c} is open.

Examples:In usual metric space on R
(i) $[\mathrm{a}, \mathrm{b}]$ is closed.
since $[a, b]^{c}=(-\infty, a) \cup(b, \infty)$
here, $(-\infty, a)$ and (b, ∞) are open so $(-\infty, a) \cup(b, \infty)$ is open hence $[a, b]^{c}$ is open $\Longrightarrow[a, b]$ is closed.
(ii) Set of natural no. N is closed.
since $N=\{1,2,3, \ldots \ldots .$.$\} and N^{c}=R-N=(-\infty, 1) \cup(1,2) \cup(2,3) \cup \ldots \ldots \ldots$.

$$
=(-\infty, 1) \cup \bigcup_{n=1}^{\infty}(n, n+1)
$$

since for all $n \in N,(n, n+1)$ is open also $(-\infty, 1)$ is open and we know that arbitrary union of open sets is open, hence

$$
(-\infty, 1) \cup \bigcup_{n=1}^{\infty}(n, n+1) \quad \text { is open }
$$

So N^{c} is open therefore \mathbf{N} is closed.
(iii) Similarly we can show \mathbf{Z} (set of all integers) is closed.
(iv) \mathbf{Q} and $\mathbf{Q}^{\mathbf{c}}$ are not closed as its complements are not open.
(refer to examples of open set)

PROPERTIES OF CLOSEDSET: Let (X, d) be a metric space then-
(a). ϕ set is always closed in X

Proof: since we $\phi^{c}=X$ and X is open (refer to property of open set)
so ϕ^{c} is open, hence ϕ is closed.
(b). X is always closed in X
since $X^{c}=\phi$ and ϕ is open, so X^{c} is open and hence X is closed.
(c). Intersection of arbitrary collection of cloesd sets is closed.

Proof: Let $\left\{F_{\lambda}: \lambda \in I\right\}$, where I is an index set, be a collection of closed sets.
to show $\bigcap_{\lambda \in 1} \mathrm{~F}_{\lambda} \underline{\text { is a closed set, }}$

$$
\left(\bigcap_{\lambda \in 1} F_{\lambda}\right)^{c}=\bigcup_{\lambda \in I} F_{\lambda}{ }^{c} \quad \text { [Using Demorgan's law] }
$$

since F_{λ} is closed for all $\lambda \in I$, so $F_{\lambda}{ }^{c}$ is open for all $\lambda \in I$ also we know that union of arbitrary collection of open sets is open

$$
\begin{aligned}
\text { so } \bigcup_{\lambda \in \mathrm{I}} \mathrm{~F}^{\mathrm{c}} \text { is open } & \Longrightarrow\left(\bigcap_{\lambda \in \mathrm{I}} \mathrm{~F}_{\lambda}\right)^{\mathrm{c}} \text { is open } \\
& \Longrightarrow \bigcap_{\lambda \in \mathrm{I}} \mathrm{~F}_{\lambda} \text { is closed }
\end{aligned}
$$

(d).Union of finite collection of closed sets is closed.

In particular, let F_{1} and F_{2} are two closed sets then intersection of F_{1} and F_{2} is closed.
Proof: by Demorgan's law, ($\mathrm{F} 1 \cup \mathrm{~F} 2)^{\mathrm{c}}=\mathrm{F}_{1}{ }^{\mathrm{c}} \cap \mathrm{F}_{2}{ }^{\mathrm{c}}$
since F_{1} and F_{2} are closed $\Longrightarrow F_{1}{ }^{c}$ and $F_{2}{ }^{c}$ are open

$$
\begin{aligned}
& \Longrightarrow F_{1}^{c} \cap F_{2}^{c} \text { is open } \quad \text { [since finite intersection of open sets is open] } \\
& \Longrightarrow \quad \cup(F 1 \quad F 2)^{c} \text { is open } \quad \cup \Longrightarrow F 1 \quad F 2 \text { is closed. }
\end{aligned}
$$

Remark: Union of arbitrary collection of closed sets need not be closed.
Example: In usual metric space on R, consider the collection $\{[1 / n, 1]: n \in N\}$ so

$$
\bigcup_{n \in \mathbb{N}}[1 / n, 1]=(0,1]
$$

now, since $(0,1]^{c}=(-\infty, 0] \cup(1, \infty)$
here $(-\infty, 0]$ is not nbd of $0 \quad$ [check it]
$\Longrightarrow(-\infty, 0]$ is not nbd of its all points hence not open
$\Longrightarrow(-\infty, 0] \cup(1, \infty)$ is not open $\Longrightarrow(0,1]^{c}$ is not open $\Longrightarrow(0,1]$ is not closed
hence the statement.

