# **B.Sc 3rd YEAR**

# PAPER - 1<sup>ST</sup>, UNIT- (IV) { METRIC SPACE }

#### **METRIC:**

Let  $X \neq \phi$  be set then a function  $d : X \times X \rightarrow R$  (set of real numbers) is called metric on X if it satisfies the following conditions -

(i)  $d(x, y) \ge 0$ 

(ii)  $d(x, y) = 0 \Leftrightarrow x = y$ 

(iii) d(x, y) = d(y, x)

(iv)  $d(x, y) \le d(x, z) + d(z, y), \forall x, y, z \in X$ 

Note: d is also called distance function.

### **METRIC SPACE:**

The pair (X, d) is called metric space.

**EXAMPLE:** (1) Let X=R, d : X×X  $\rightarrow$  R defined by d(x, y) = |x - y| then d is a metric on X. **SOLUTION:** (i) let x, y  $\in$  R then x-y  $\in$  R  $\implies$  |x - y|  $\ge$  0  $\implies$  d(x, y)  $\ge$  0

(ii)  $d(x, y)=0 \Leftrightarrow |x - y| = 0 \Leftrightarrow x-y=0 \Leftrightarrow x = y$ 

(iii) d(x, y) = |x - y| = |-(y - x)| = |y - x| = d(y, x)

(iv)let  $z \in R$ ,  $d(x, y) = |x - y| = |x - z + z - y| \le |x - z| + |z - y| = d(x, z) + d(z, y)$ 

{by triangle inequality in modulus}

Thus d is a metric on R . REMARK: The above metric is called **usual metric on R**.

**EXAMPLE:** (2) Let X be a non empty s et and d(x, y) =

 $\begin{bmatrix} 0, & x = y \\ 1, & x \neq y \quad \forall x, y \in X \end{bmatrix}$ 

# then d is a metric and is called **discrete meric on X. SOLUTION:**

(i) From the definition of d , for all x , y  $\in X$  , d(x, y) is either 0 or 1 hence d(x, y)  $\ge 0$ 

(ii)  $d(x, y) = 0 \Leftrightarrow x = y$  (by def. of d)

(iii) let x, y  $\in$  X then x = y or x  $\neq$  y

if  $x = y \Longrightarrow y = x$ , so d(x, y) = d(y, x)

(Non-negativity)

(Symmetry)

(Triangle inequality)

if 
$$x \neq y \Longrightarrow y \neq x$$
, so  $d(x, y) = d(y, x)$   
in both cases  $d(x, y) = d(y, x)$   
(iv) let  $z \in X$   
case I: if  $x = y$  then either  $x = y = z$  or  $x = y \neq z$   
 $\implies$  either  $d(x, y) = d(x, z) = d(z, y) = 0$  or  $d(x, y) = 0$  and  $d(x, z) = d(z, y) = 1$   
 $\implies$  either  $d(x, y) = d(x, z) + d(z, y)$  or  $d(x, y) < d(x, y) + d(z, y)$   
so  $d(x, y) \le d(x, y) + d(z, y)$   
cases II: if  $x \neq y$  then either  $x \neq y = z$  or  $x \neq y \neq z$   
 $\implies$  either  $d(x, y) = d(x, z) = 1$  and  $d(z, y) = 0$  or  $d(x, y) = d(x, y) = d(z, y) = 1$   
 $\implies$  either  $d(x, y) = d(x, y) + d(z, y)$  or  $d(x, y) < d(x, y) + d(z, y) = 1$   
 $\implies$  either d(x, y)  $\le d(x, y) + d(z, y)$  or  $d(x, y) < d(x, y) + d(z, y)$   
thus in either case  $d(x, y) \le d(x, y) + d(z, y) \forall x, y, z \in X$ , hence d is a metric on X

### NOTE:

**MINKOSWKI INQUALITY:** if  $p \ge 1$ ,  $x_{i}$ ,  $y_{i}$  are positive real numbers  $\forall$  i  $\in N$ 

$$\left[\sum_{i=1}^{n} \left(x_{i} + y_{i}\right)^{p}\right]^{1/p} \leq \left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1/p} + \left(\sum_{i=1}^{n} y_{i}^{p}\right)^{1/p}$$

**EXAMPLE:** (3) Let  $X = R^2$ ,  $d(x, y) = [(x_1 - y_1)^2 + (x_2 - y_2)^2]^{1/2}$ ,  $x = (x_1, x_2)$ ,  $y = (y_1, y_2) \in R^2$  then d is a metric on  $R^2$ .

## SOLUTION:

(i) since 
$$(x_1 - y_1)^2 \ge 0$$
,  $x_{2-} y_2)^2 \ge 0 \implies (x_1 - y_1)^2 + (x_2 - y_2)^2 \ge 0$   
 $\implies [(x_1 - y_1)^2 + (x_{2-} y_2)^2]^{1/2} \ge 0 \implies d(x, y) \ge 0$   
(ii)  $d(x, y) = 0 \Leftrightarrow [(x_1 - y_1)^2 + (x_{2-} y_2)^2]^{1/2} = 0 \Leftrightarrow (x_1 - y_1)^2 + (x_2 - y_2)^2 = 0$   
 $\Leftrightarrow (x_1 - y_1)^2 = 0$  and  $(x_{2-} y_2)^2 = 0 \Leftrightarrow x_1 - y_1 = 0$  and  $x_{2-} y_2 = 0 \Leftrightarrow x_1 = y_1$  and  $x_2 = y_2$   
 $\Leftrightarrow x = y$ 

(iii) 
$$d(x, y) = [(x_1 - y_1)^2 + (x_{2-}y_2)^2]^{1/2} = [(y_1 - x_1)^2 + (y_2 - x_2)^2]^{1/2} = d(y, x)$$

(iv) d(x, y) = 
$$[(x_1 - y_1)^2 + (x_2 - y_2)^2]^{1/2} = \left[\sum_{i=1}^2 (x_i + y_i)^2\right]^{1/2}$$

let 
$$z = (z_1, z_2)$$
 then  $d(x, y) = \left[\sum_{i=1}^{2} (x_i - z_i + z_i - y_i)^2\right]^{1/2}$   
 $\leq \left(\sum_{i=1}^{2} (x_i - z_i)^2\right)^{1/2} + \left(\sum_{i=1}^{2} (z_i - y_i)^2\right)^{1/2}$ 

(using Minkowski's Ineq.)

= d(x, z) + d(z, y)thus d(x, y)  $\leq$  d(x, z) + d(z, y)

**EXERCISE:** Show that (X, d) is a metric space where,  $X = R^3$ ,  $d(x, y) = \left[\sum_{i=1}^{3} (x_i - y_i)^2\right]^{1/2}$ 

**EXAMPLE:** (4) If d is metric on a set  $X \neq \phi$  then  $d^*(x, y) = \min\{1, d(x, y)\}$  is also a metric on X. SOLUTION:

Given that d is a metric on X so we have -

(i)  $d(x, y) \ge 0$ (ii)  $d(x, y) = 0 \Leftrightarrow x = y$ (iii) d(x, y) = d(y, x)(iv)  $d(x, y) \le d(x, z) + d(z, y)$ ,  $\forall x, y, z \in X$ now to show d<sup>\*</sup> is metric on X (i)<sup>\*</sup> since 1 > 0 and  $d(x, y) \ge 0 \forall x, y \in X$  { using (i)}  $\implies \min\{1, d(x, y)\} \ge 0 \implies d^*(x, y) \ge 0$ 

 $(ii)^* d^*(x, y) = 0 \Leftrightarrow \min\{1, d(x, y)\} = 0 \Leftrightarrow d(x, y) = 0 \Leftrightarrow x = y \qquad \{\text{since } 1 \neq 0 \text{ and using } (ii)\}$ 

 $(iii)^* d^*(x, y) = \min\{1, d(x, y)\} = \min\{1, d(y, x)\} = d^*(y, x)$  {using (iii)}

(iv)\* Let z  $\in X$  from d\*(x, y) = min{1, d(x, y)} we have d\*(x, y)  $\leq d(x, y) \quad \forall x, y \in X$  ..... (#) case I : if either d(x, z)  $\geq 1$  or d(z, y)  $\geq 1 \implies$  either min{1, d(x, z)} = 1 or min{1, d(z, y)} = 1  $\implies$  either d\*(x, z) = 1 or d\*(z, y) = 1 so d\*(x, z) + d\*(z, y)  $\geq 1 \geq d^*(x, y)$ case II: if d(x, z) <1 and d(z, y) < 1 then min{1, d(x, z)} = d(x, z) and min{1, d(z, y)} = d(z, y)  $\implies d^*(x, z) = d(x, z) \text{ and } d^*(z, y) = d(z, y) \qquad ..... (##)$ now, d\*(x, y)  $\leq d(x, y)$  (using equation (#))  $\leq d(x, z) + d^*(z, y)$  (using equation (##))

thus, in both cases  $d^*(x, y) \le d^*(x, z) + d^*(z, y), \forall x, y, z \in X$ 

**OPEN SPHERE ( OPEN BALL):** Let X be a non empty set and d is a metric on X then open sphere

of radius r > 0 (positive real number) centred at  $x_0 \in X$  denoted and defined by-

 $S(x_{0, r}) = S_r(x_0) = \{x \in X: d(x_0, x) < r\}$ 

**CLOSED SPHERE ( CLOSED BALL):** Let X be a non empty set and d is a metric on X then open sphere

of radius r > 0 (positive real number) centred at  $x_0 \in X$  denoted and defined by-

 $S[x_0, r] = Sr[x_0] = \{x \in X: d(x_0, x) \le r\}$ 

EXAMPLE (1): Find open and closed sphere in usual meric space (R, d).

### SOLUTION:

Since we know that usual metric on R is defined by d(x, y) = |x - y|

let  $x_0 \in R$  be the centre and r > 0 be a radius.

Open shpere  $S(x_0, r) = \{x \in R: d(x_0, x) < r\} = \{x \in R : |x_0 - x| < r\}$  (by def. of d)

$$= \{ x \in R : |x - x_0| \le r \} = \{ x \in R : -r \le x - x_0 \le r \}$$

$$= \{x \in \mathbb{R}: x_0 - r < x < x_0 + r\} = (x_0 - r, x_0 + r)$$



thus we can see that open sphere in usual metric on R is an open interval with end point  $x_{0-}r$  and  $x_0 + r$ .

Similarly, closed sphere  $S[x_0, r] = \{x \in \mathbb{R}: x_0 - r \le x \le x_0 + r\} = [x_{0-}r, x_0 + r]$  is closed



EXAMPLE (2) Find open and closed sphere in discrete metric space (X, d). SOLUTION:

<u>To find open sphere</u> : given that d is a discrete metric on X i.e.

$$d(x, y) = \begin{cases} 0, & x = y \\ \\ 1, & x \neq y \quad \forall x, y \in X \end{cases}$$

let  $x_0 \in X$  and r > 0 then  $S(x_0, r) = \{x \in X : d(x_0, x) < r\}$ case I: if 0 < r < 1 then  $S(x_0, r) = \{x \in X : d(x_0, x) = 0\}$  because d(x, y) either  $\implies S(x_0, r) = \{x \in X : x = x_0\} \implies S(x_0, r) = \{x_0\}$  [using (ii) property of metric] case II: if  $r \ge 1$  then  $S(x_0, r) = \{x \in X: d(x_0, x) < 1\} = \{x \in X: d(x_0, x) = 0\} = \{x \in X: x = x_0\} = \{x_0\}$ thus  $\forall r > 0$ , every singleton is an open sphere in discrete metric space. To find closed sphere :

Case I : if 0 < r < 1 then  $S[x_0, r] = \{x \in X: d(x_0, x) \le r\} = \{x \in X: d(x_0, x) = 0\}$  [since r < 1] =  $\{x \in X: x = x_0\} = \{x_0\}$  [(ii) property]

Case II: if  $r \ge 1$  then  $S[x_0, r] = \{x \in X: d(x_0, x) \le 1\} = X$  [by def. of d] thus  $\forall r > 0$ , every singleton and whole X are closed sphere in discrete metric space.

EXAMPLE (3) Find open and closed sphere of unit radius centred at origin in the metric space  $(R^{2}, d)$  where  $d(x, y) = [(x_1 - y_1)^2 + (x_2 - y_2)^2]^{1/2}$ ,  $x = (x_1, x_2)$ ,  $y = (y_1, y_2) \in R^2$ SOLUTION :

<u>To find open sphere</u>: given that centre  $x_0 = (0, 0)$  and radius r = 1

so, 
$$S(x_0, r) = \{x \in X : d(x_0, x) < r\} \implies S((0, 0), 1) = \{x \in X : d((0, 0), (x_1, x_2)) < 1\}$$
  
=  $\{x \in X : [(x_1 - 0)^2 + (x_{2-} 0)^2]^{1/2} < 1\}$   
=  $\{x \in X : x_1^2 + x_2^2 < 1\}$ 

=set of all points within a circle of radius 1 centred at origin except poitns on circumference



All points within the circle are included in the open sphere.

To find closed sphere:

in the similar way, closed sphere ,  $S[(0, 0), 1] = \{ x \in X: x_1^2 + x_2^2 \le 1 \}$ 



**Exercise:** Show that (R<sup>2</sup>, d), where  $d(x, y) = |x_1-y_1| + |x_2-y_2| \quad \forall x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$ .

Also find open and closed sphere of unit radius centred at origin in this metric space.

**NEIGHBOURHOOD (nbd) OF A POINT:** let (X, d) be a metric space and  $N \subseteq X$  then N is said to be nbd of x  $\in X$  if there exist an open sphere of centred at x of radius r > 0 such that

 $S(x, r) \subseteq N$ 

**Remark:** If for all r > 0,  $S(x, r) \not\subset N$  then N is not nbd of x.

**Example:1(a)**. In usual metric space on R, let  $N = (1, 2) \subseteq R$  and x = 1.5 check whether N is a neighborhood of the point x or not.

solution: if we choose radius r = 0.1 > 0 then open sphere centred at x = 1.5S(1.5, 0.1) S(1.5, 0.1) = (1.5-0.1, 1.5+0.1) = (1.4, 1.6)  $\subseteq$  (1, 2) = N

so (1, 2) is a nbd of 1.5

**1(b)**. If N = [1, 2) and x = 1 check N is a nbd of x or not.

solution: if we choose any radius r > 0 then open sphere S(1, r) = (1-r, 1+r) is not contained in [1, 2)

i.e.  $(1-r, 1+r) \not\subset [1, 2)$ 

so [1, 2) is not a nbd of 1



**OPEN SET:** let (X,d) be a metric space and  $G \subseteq X$  then is G is said to be an open set if it is nbd of its all points.

i.e. G is said to be an open set of X if  $\forall x \in G$  there exits r > 0 such that  $S(x, r) \subseteq N$ .

EXAMPLES: In usual metric space on R, the following subsets of R are open or not ?

(a) N ( set of natural numbers)

(b) Z ( set of integers)

(c) Q ( set of rational numbers)

(d) Q<sup>c</sup> (set of irrational numbers)

(e) R ( set of real numbers)

**Solution:** (a) Let x be any natural no. then for any r > 0 S(x, r) = (x-r, x+r)  $\subset N$ .

because (x-r, x+r) also contains non-natural nos.Thus N is not nbd of its all points , hence **not an open set.** 

(b) Let x be any integer no. then for any r > 0 S(x, r) = (x-r, x+r)  $\not\subset Z$ 

because (x-r, x+r) also contains non-integer nos.Thus Z is not nbd of its all points , hence **not an open set.** 

(c) Let x be any rational no. then for any r > 0 S(x, r) = (x-r, x+r)  $\not\subset Q$ 

because (x-r, x+r) also contains irrational nos.Thus Q is not nbd of its all points , hence **not an open set.** 

(d) same as part (c)

(e) Let x be any real no. then there exists r > 0 (even for every r > 0),  $S(x, r) = (x-r, x+r) \subseteq R$  beacuse (x-r, x+r) contions infinitely many rational and irrational points, so contained in R. Thus R is nob of its all its points, hence R is **an open set**.

**PROPERTIES OF OPEN SET:** Let (X, d) be a metric space-

(a)  $\phi$  is always an open set in X

proof:  $\phi$  is trivially an open set or we can say that there is no point in  $\phi$  for which it is not a nbd, hence an open set.

**(b)** X is always open in X.

Proof: Let x be any point of X then there exists r > 0 (even for every r > 0) s. t.

 $S(x, r) \subseteq R$ , hence X is always an open set.

(c)Union of arbitrary collection of open sets is open.

Proof: Let {  $G_{\lambda}$ :  $\lambda \in I$  }, where I is an index set, be an arbitrary collection of open sets.

 $\begin{array}{c} T_{\underline{o} \ show} \bigcup_{\lambda \in I} G_{\lambda} \ \underline{is \ an \ open \ set}, \ let \ x \ \varepsilon \ \bigcup_{\lambda \in I} G_{\lambda} \ be \ an \ arbitrary \ point \\ \implies x \ \varepsilon \ G_{\lambda 0}, \quad for \ some \ \lambda_0 \ \varepsilon \ I \end{array}$ 

since  $G_{\lambda 0}$  is an open set so it is a neighbourhood of each of its points

so there exist r >0 such that  $x \in S(x, r) \subseteq G_{\lambda 0}$ , for some  $\lambda_0 \in I$ 

$$\Rightarrow S(\mathbf{x}, \mathbf{r}) \subseteq \bigcup_{\lambda \in \mathbf{I}} G_{\lambda} \qquad \text{Since } G_{\lambda 0} \subseteq \bigcup_{\lambda \in \mathbf{I}} G_{\lambda}$$
$$\Rightarrow \bigcup_{\lambda \in \mathbf{I}} G_{\lambda} \text{ is a nbd of } \mathbf{x}$$

since x is arbitrary so  $\bigcup_{\lambda \in I} G_{\lambda}$  is a nbd of each of its points hence  $\bigcup_{\lambda \in I} G_{\lambda}$  is an open set.

(d) Intersection of finite collection of open sets is open.

In particular, let  $G_1$  and  $G_2$  be two open set then  $G_1 \cap G_2$  is open.

Proof: to show  $G_1 \cap G_2$  is an open set, let  $x \in G_1 \cap G_2$  be an arbitrary point

$$\implies$$
 x  $\in$  G<sub>1</sub> and x  $\in$  G<sub>2</sub>

since  $G_1$  and  $G_2$  are open so there exist  $r_1 > 0$  and  $r_2 > 0$  s.t.  $x \in S(x,r_1) \subseteq G_1$  and  $S(x,r_2) \subseteq G_2$ 

choose min{ $r_1$ ,  $r_2$ } = r (say)>0

then  $S(x,r) \subseteq G_1$  and  $S(x,r) \subseteq G_2 \implies \subseteq S(x,r) \qquad G_1 \cap G_2$ 

since x is arbitrary, so we can say that for all  $x \in G_1 \cap G_2$  there exists r > 0 s.t.  $S(x,r) \subseteq G_1 \cap G_2$   $\implies G_1 \cap G_2$  is nod of its all points  $\implies G_1 \cap G_2$  is an open set.

Remark: Intersection of arbitrary collection of open sets need not be an open set.

Example: Consider usual metric on R and { (-1/n, 1/n) :  $n \in N$  } be collection of open sets in R as open intervals in usual metric are open .

Now, 
$$\bigcap_{n \in \mathbb{N}} (-1/n, 1/n) = \{0\}$$

to show {0} is not open, let  $0 \in \{0\}$  then for any r >0, (0-r, 0+r) = (-r, +r)  $\not\subset \{0\}$ 

 $\implies$  {0} is not nbd of 0, hence not an open set.

THEROEM: In any metric space, every open sphere is an open set.

Proof:Let be (X, d) be a metric space and S(x, r) be an open sphere centred at x of radius r >0



Thus S(x, r) is a nbd of y which is arbitrary, hence S(x, r) is nbd of its all points.

therefore S(x, r) is an open set.

**THEOREM:** Let (X, d) be a metric space and G be a subset of X then G is open if and only if G is union of open spheres.

Proof: Case I: Let G is open

- $\Rightarrow$  G is nbd of each of its points i.e.  $\forall x \in G$  there exists  $r_x > 0$  s. t.  $S(x, r_x) \subseteq G$  so
  - $\bigcup_{x \in G} S(x, r_x) \subseteq G \qquad \qquad \dots \dots (i)$

since  $x \in S(x, r_x) \Longrightarrow \subseteq \{x\} \quad S(x, r_x)$ 

$$\implies \bigcup_{x \in G} \{x\} \subseteq \bigcup_{x \in G} S(x, r_x) \qquad \implies G \subseteq \bigcup_{x \in G} S(x, r_x) \qquad \dots (ii)$$

from (i) and (ii), G = 
$$\bigcup_{x \in G} S(x, r_x)$$

 $\implies$  G is Union of open spheres.

Case II: let G is Union of open spheres.:

$$\Longrightarrow$$
G =  $\bigcup_{x \in G} S(x, r_x)$ 

Since we know that open is sphere is an open set and arbitrary Union of open sets is open,

hence G is open.

# CLOSED SET:

Let (X,d) be a metric space then a subset F of X is said to be closed if its complement i.e.  $F^c$  is open.

Examples: In usual metric space on R

(i) [a, b] is closed.

since  $[a, b]^c = (-\infty, a) \cup (b, \infty)$ 

here,  $(-\infty, a)$  and  $(b, \infty)$  are open so  $(-\infty, a) \cup (b, \infty)$  is open

hence  $[a, b]^c$  is open  $\implies [a, b]$  is closed.

(ii) Set of natural no. N is closed.

since N = {1, 2, 3,.....} and N<sup>c</sup> = R - N = (- $\infty$ , 1)  $\bigcup$  (1, 2)  $\bigcup$  (2, 3)  $\bigcup$  .....

= (-
$$\infty$$
, 1)  $\bigcup \bigcup_{n=1}^{\infty} (n, n+1)$ 

since for all  $n \in N$ , (n, n+1) is open also (- $\infty$ , 1) is open and we know that arbitrary union of open sets is open , hence

 $(-\infty, 1) \bigcup \bigcup_{n=1}^{\infty} (n, n+1)$  is open

So  $N^{\rm c}$  is open therefore  $\boldsymbol{N}$  is closed.

(iii) Similarly we can show Z (set of all integers) is closed.

(iv)**Q** and **Q**<sup>c</sup> are not closed as its complements are not open.

(refer to examples of open set)

**PROPERTIES OF CLOSEDSET:** Let (X, d) be a metric space then-

(a).  $\phi$  set is always closed in X

Proof: since we  $\phi^c$  = X and X is open (refer to property of open set)

so  $\, \varphi^c$  is open , hence  $\varphi$  is closed.

(b). X is always closed in X

since  $X^c = \phi$  and  $\phi$  is open, so  $X^c$  is open and hence X is closed.

(c). Intersection of arbitrary collection of cloesd sets is closed.

**Proof:** Let {  $F_{\lambda}$  :  $\lambda \in I$  }, where I is an index set, be a collection of closed sets.

to show 
$$\bigcap_{\lambda \in I} F_{\lambda}$$
 is a closed set,  
 $\left(\bigcap_{\lambda \in I} F_{\lambda}\right)^{c} = \bigcup_{\lambda \in I} F_{\lambda}^{c}$ 

[ Using Demorgan's law ]

since  $F_{\lambda}$  is closed for all  $\lambda \in I$ , so  $F_{\lambda}^{c}$  is open for all  $\lambda \in I$ also we know that union of arbitrary collection of open sets is open

$$so \bigcup_{\lambda \in I} F_{\lambda}^{c} \text{ is } open \Longrightarrow \left( \bigcap_{\lambda \in I} F_{\lambda} \right)^{c} \text{ is open}$$

 $\implies \bigcap_{\lambda \in I} F_{\lambda} \text{ is closed}$ 

(d). Union of finite collection of closed sets is closed.

In particular, let F<sub>1</sub> and F<sub>2</sub> are two closed sets then intersection of F<sub>1</sub> and F<sub>2</sub> is closed.

Proof: by Demorgan's law, ( $F1 \cup F2$ )<sup>c</sup> =  $F_1^c \cap F_2^c$ 

since  $F_1$  and  $F_2$  are closed  $\implies F_1^c$  and  $F_2^c$  are open

 $\implies$   $F_1^{c} \cap F_2^{c}$  is open [ since finite intersection of open sets is open ]

 $\implies$   $\cup$  (F1 F2)<sup>c</sup> is open  $\cup$   $\implies$  F1 F2 is closed.

Remark: Union of arbitrary collection of closed sets need not be closed.

Example: In usual metric space on R, consider the collection { [1/n, 1] :  $n \in N$  } so

$$\bigcup_{n \in \mathbb{N}} [1/n, 1] = (0, 1]$$

now, since  $(0, 1]^c = (-\infty, 0] \cup (1, \infty)$ 

here  $(-\infty, 0]$  is not nbd of 0 [check it]

 $\implies$  (- $\infty$ , 0] is not nbd of its all points hence not open

 $\implies$  (- $\infty$ , 0]  $\cup$  (1,  $\infty$ ) is not open  $\implies$  (0, 1]<sup>c</sup> is not open  $\implies$  (0, 1] is not closed hence the statement.

MW 1