

National Education Policy-2020

Common Minimum Syllabus for all U. P. State Universities and Colleges

FOR
B.A./B.SC. - MATHEMATICS (w.ef. session 2021-22)

Approved by
Board of Studies
Department of Mathematics
Faculty of Science and Technology
Mahatma Gandhi Kashi Vidyapith
Varanasi

SEMESTER WISE TITLES OF THE PAPER IN UG MATHEMATICS COURSE					
YEAR	SEMESTER	COURSE CODE	PAPER TITLE	THEORY/PRACTICAL	Credit
CERTIFICATE COURSE IN APPLIED MATHEMATICS					
$\begin{aligned} & \text { FIRST } \\ & \text { YEAR } \end{aligned}$	I	B030101T	Differential Calculus \& Integral Calculus	THEORY	4
		B030102P	PRACTICAL	PRACTICAL	2
	II	B030201T	Matrices and Differential Equations \& Geometry	THEORY	6
DIPLOMA IN MATHEMATICS					
$\begin{aligned} & \hline \text { SECOND } \\ & \text { YEAR } \end{aligned}$	III	B030301T	Algebra \& Mathematical Methods	THEORY	6
	IV	B030401T	Differential Equations \& Mechanics	THEORY	6
DEGREE IN MATHEMATICS					
$\begin{aligned} & \text { THIRD } \\ & \text { YEAR } \end{aligned}$	V	B030501T	Group and Ring Theory \& Linear Algebra	THEORY	5
		B030502T	Any One of The Following (i) Number Theory \& Game Theory (ii) Graph Theory \& Discrete Mathematics (iii) Differential Geometry \& Tensor Analysis	THEORY	5
	VI	B030601T	Metric Space \& Complex Analysis	THEORY	4
		B030602T	Numerical Analysis \& Operations Research	THEORY	4
		B030603P	PRACTICAL	PRACTICAL	2

PROPOSED STRUCTURE OF UG MATHEMATICS SYLLABUS AS PER NEP 2020 GUIDELINES GENERAL OVERVIEW

B.A./ B.Sc.										
PROGRAMME	$\frac{\pi}{x}$	SEMESTER (15Weeks)	PAPER	(1030	PERIODS Per Week	PERIODS (HOURS) Per Semester	PAPER TITLE	UNIT (Periods Per Semester)	PREREQUISITE	ELECTIVE (For Other Faculty)
			Paper-1	4	4	$\begin{array}{r} 089 \\ 4 \times 15=60 \end{array}$	Differential Calculus Integral Calculus Part A: Differential Calculus Part B: Integral Calculus	Part A Unit I (9) Unit II (7) Unit III (7) Unit IV (7) Part B Unit V (9) Unit VI (7) Unit VII (7) Unit VIII (7)	Mathematics in $12^{\text {th }}$	Engg. and Tech. (UG), Chemistry/Biochemistry/ Life Sciences(UG), Economics(UG/PG), Commerce(UG), BBA/BCA, B.Sc.(C.S.)
			Paper-II Practical	2	2 Lab Periods(2 Hours Each)	$2 \times 2 \times 15=60$	Practical (Practicals to be done using MATHEMATICA /MATLAB /Maple /SCILAB/Maxima/ GAP etc.)		Mathematics in $12^{\text {din }}$	Engg. and Tech. (UG), B.Sc.(C.S.)
			Paper-1	6	6	$6 \times 15=90$	Matrices and Differential Equations $\&$ Geometry Part A: Matrices and Differential Equations Part B: Geometry	Part A Unit I (12) Unit II (11) Unit III (11) Unit IV (11) Part B Unit V (12) Unit VI (11) Unit VII (11) Unit VIII (11)	Mathematics in $12^{\text {din }}$	Engg. and Tech. (UG), B.Sc.(C.S.)

B.A./B.NC. I										
PROGRAMME	$\stackrel{y}{\underset{\lambda}{y}}$	$\begin{gathered} \text { SEMESTER } \\ (15 W e e k s) \end{gathered}$	PAPER		PERIODS Per Week	PERIODS (HOURS) Per Semester	PAPER TITLE	UNIT (Periods Per Semester)	PREREQUISITE	ELECTIVE (For Other Faculty)
	$\underset{y}{\underset{y}{4}}$		Paper-1	6	6	$6 \times 15=90$	Algebra $\&$ Mathematical Methods Part A: Algebra Part B: Mathematical Methods	Part A Unit I (12) Unit II (11) Unit III (11) Unit IV (11) Part B Unit V (12) Unit VI (11) Unit VII (11) Unit VIII (11)	Certificate Course in Applied Mathematics	Engg. and Tech. (UG), B.Sc.(C.S.)
		SEMESTER - IV	Paper-1	6	6	$6 \times 15=90$	Differential Equations Mechanics Part A: Differential Equations Part B: Mechanics	Part A Unit I (12) Unit II (11) Unit III (11) Unit IV (11) Part B Unit V (12) Unit VI (11) Unit VII (11) Unit VIII (11)	Certificate Course in Applied Mathematics	Engg. and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.) Engineering and Technology (UG), Science (Physics-UG)

Programme Outcome:

PO1: It is to give foundation knowledge for the students to understand basics of mathematics including applied aspect for the same.
PO2: It is to develop enhanced quantitative skills and pursuing higher mathematics and research as well.
PO3: Students will be able to develop solution oriented approach towards various issues related to their environment.
PO4: Students will become employable in various govt. and private sectors
PO5: Scientific temper in general and mathematical temper in particular will be developed in students.

Programme Specific Outcome:

PSO1: Student should be able to possess recall basic idea about mathematics which can be displayed by them.
PSO2: Student should have adequate exposure to many aspects of mathematical sciences.
PSO3: Student is equipped with mathematical modeling ability, critical mathematical thinking, and problem solving skills etc.
PSO4: Student should be able to apply their skills and knowledge in various fields of studies including, science, engineering, commerce and management etc.

B.A. /B.SC. I (MATHEMATICS)

Detailed Syllabus For
CERTIFICATE COURSE
IN
APPLIED MATHEMATICS

B.A./B.Sc. I (SEMESTER-I) PAPER-I Differential Calculus \& Integral Calculus

B.A./B.Sc. I (SEMESTER-I) Paper-II Practical

	(4) Sketching parametric curves, e.g., Trochoid, Cycloid, Epicycloid and Hypocycloid etc. (5) Tracing of conic in Cartesian coordinates. (6) Graph of circular and hyperbolic functions. (7) Obtaining surface of revolution of curves. (8) Complex numbers and their representations, Operations like addition, Multiplication, Division, Modulus. Graphical representation of polar form. (9) Find numbers between two real numbers and plotting of finite and infinite subset of R . (10) Matrix Operations: Addition, Multiplication, Inverse, Transpose, Determinant, Rank, Eigenvectors, Eigenvalues, Characteristic equation and verification of the Cayley-Hamilton theorem, Solving the systems of linear equations. (11) Study the convergence of sequences through plotting. (12)Verify Bolzano-Weierstrass theorem through plotting of sequences and hence identify convergent subsequences from the plot. (13)Study the convergence/divergence of infinite series by plotting their sequences of partial sum. (14) Cauchy's root test by plotting n-th roots. (15) Ratio test by plotting the ratio of n-th and $(n+1)$-th term.			
Suggested Readings				
This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Chemistry/Biochemistry/Life Sciences(UG), Economics(UG/PG), Commerce(UG), BBA/BCA, B.Sc.(C.S.)				
Suggested Continuous Evaluation Methods: Max. Marks: 25				
SN		Assessment Type	Max	Mark
1	Class Tests	Tests		10
2	Online Quizzes/ Objective Tests	Quizzes/ Objective Tests		5
3	Presentation	tation		5
4	Assignment	ment		5
Course prerequisites: To study this course, a student must have subject Mathematics in class $12^{\text {th }}$				
Suggested equivalent online courses:				
Further Suggestions:				

B.A./B.Sc. I (SEMESTER-II) PAPER-I Matrices and Differential Equations \& Geometry

B.A./B.Sc. II (MATHEMATICS)
 Detailed Syllabus For
 DIPLOMA
 IN
 MATHEMATICS

B.A. / B.Sc. II (SEMESTER-III) PAPER-I Algebra \& Mathematical Methods

B. A. / B. Sc. II (SEMESTER-IV) PAPER-I Differential Equations \& Mechanics

B.A./B.Sc. III (MATHEMATICS)

Detailed Syllabus For

DEGREE IN

MATHEMATICS

B.A./B.Sc. III (SEMESTER-V) PAPER-I Group and Ring Theory \& Linear Algebra

B. A. / B. Sc. III (SEMESTER-V) PAPER-II (i) Number Theory \& Game Theory

B.A./B.Sc. III (SEMESTER-V) PAPER-II (ii) Graph Theory \& Discrete Mathematics

Programme: Degree Class: B.A./B.Sc.	Year: Third	Semester: Sixth	
Subject: Mathematics			
Course Code: B030502T	Course Title: Graph Theory \& Discrete Mathematics		
Course outcomes:			
CO1: Upon successful completion, students will have the knowledge of various types of graphs, their terminology and applications.			
CO2: After Successful completion of this course students will be able to understand the isomorphism and homomorphism of graphs. This course covers the			
basic concepts of graphs used in computer science and other disciplines. The topics include path, circuits, adjacency matrix, tree, coloring.. After successful			
completion of this course the student will have the knowledge graph coloring, color problem, vertex coloring.			
CO3: After successful completion, students will have the knowledge of Logic gates, Karnaugh maps and skills to proof by using truth tables. After			
Successful completion of this course students will be able to apply the basics of the automation theory, transition function and table.			
CO4: This course covers the basic concepts of discrete mathematics used in computer science and other disciplines that involve formal reasoning. The topics			
include logic, counting, relations, Hasse diagram and Boolean algebra. After successful completion of this course the student will have the knowledge in			
Mathematical reasoning, combinatorial analysis, discrete structures and Applications.			

Part- B Discrete Mathematics			
Unit	Topics		No. of Lectures
V	Propositional Logic- Proposition logic, basic logic, logical connectives, truth tables, tautologies, contradiction, normal forms (conjunctive and disjunctive), modus ponens and modus tollens, validity, predicate logic, universal and existential quantification, proof by implication, converse, inverse contrapositive, contradiction, direct proof by using truth table.		10
VI	Relation- Definition, types of relation, domain and range of a relation, pictorial representation of relation, properties of relation, partial ordering relation, Hasse diagram. Boolean Algebra- Basic definitions, Sum of products and products of sums, Logic gates and Karnaugh maps.		10
VII	Combinatorics- Inclusion- exclusion, recurrence relations (nth order recurrence relation with constant coefficients, Homogeneous recurrence relations, Inhomogeneous recurrence relations), generating function (closed form expression, properties of G.F., solution of recurrence relations using G.F. solution of combinatorial problem using G.F.)		9
VIII	Finite Automata- Basic concepts of automation theory, Deterministic Finite Automation (DFA), transition function, transition table, Non Deterministic Finite Automata (NDFA), Mealy and Moore machine, Minimization of finite automation.		9
Suggested Readings (Part-A Graph Theory): 1. N. Deo, Graph Theory with Applications to Engineering and Computer Science. 2. D. B West, Introduction to Graph Theory. 3. S. S. Ray, Graph Theory with Algorithms and Its Applications: In Applied Science and Technology. 4. A. C. Yadav, Elements of Discrete Mathematics, Golden Valley Publication. 5. Suggested digital plateform:NPTEL/SWAYAM/MOOCs 6. Course Books published in Hindi may be prescribed by the Universities.			
Suggested Readings (Part-B Discrete Mathematics): 1. C. L. Liu, Discrete Mathematics, Mc Graw Hill. 2. Trembley and Manohar, Discrete Mathematics with computer application. 3. K. H. Rosen, Discrete Mathematics and Its Applications, Mc Graw Hill. 4. R. Garnier \& J. Taylor, Discrete Mathematics A new Technology, IOP Publishing, London. 5. Suggested digital plateform:NPTEL/SWAYAM/MOOCS. 6. Course Books published in Hindi may be prescribed by the Universities.			
This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)			
Suggested Continuous Evaluation Methods: Max. Marks: 25			
SN	Assessment Type	Max	. Marks
1 Clas	Tests		10
2 Onl	e Quizzes/ Objective Tests		5
3 Pres	tation		5
4 Assi	ment		5
Course prerequisites: To study this course, a student must have Diploma in Mathematics			
Suggested equivalent online courses:			
Further Suggestions:			

B.A./B.Sc. III (SEMESTER-V) PAPER-II (iii) Differential Geometry \& Tensor Analysis

Programme: Degree Class: $\mathbf{B . A . / B . S c . ~}$	Year: Third	Semester: Sixth	
Subject: Mathematics			
Course Code: B030502T	Course Title: Differential Geometry \& Tensor Analysis		
Course outcomes:			
CO1: After Successful completion of this course, students should be able to determine and calculate curvature of curves in different coordinate systems.			
CO2: This course covers the Local theory of Curves, Local theory of surfaces, Geodesics, Geodesics curvature, Geodesic polars, Curvature of curves on sur-			
faces, Gaussian curvature, Normal curvature etc.			

CO3: After Successful completion of this course, students should have the knowledge of tensor algebra, different types of tensors, Riemannian space, Ricci tensor, Einstein space and Einstein tensor etc.

B.A./B.Sc. III (SEMESTER-VI)

Programme: Degree

B.A./B.Sc. III (SEMESTER-VI) PAPER-II Numerical Analysis \& Operations Research

B. A. / B. Sc. III (SEMESTER-VI) PAPER-III Practical

	7. Solution of ordinary differential equations i) Euler method ii) Modified Euler method iii) Runge-Kutta method (order 4) (iv) The method of successive approximations (Picard)	
	ggested Readings:	
This	course can be opted as an elective by the students of following subjects: Eng	
	Suggested Continuous Evaluatio	
SN	Assessment Type	Max. Marks
	Class Tests	10
2	Online Quizzes/ Objective Tests	5
	Presentation	5
4	Assignment	5
Cou	urse prerequisites: To study this course, a student must have Certificate C	
Sug	gested equivalent online courses:	
Fur	ther Suggestions:	

