Business statistics B.Com Ist Semester

Graphical presentation

presented by
Dr. Vandana Pandey
Associate Professor
Department Of Commerce
HCPGC VARANASI

Graphic Presentation

- The Pie Chart
- The Bar Graph
- The Statistical Map
- The Histogram
- Statistics in Practice
- The Frequency Polygon
- Times Series Charts
- Distortions in Graphs

It is important to choose the appropriate graphs to make statistical information coherent.

The Pie Chart: The Race and Ethnicity of the Elderly

- Pie chart: a graph showing the differences in frequencies or percentages among categories of a nominal or an ordinal variable. The categories are displayed as segments of a circle whose pieces add up to 100 percent of the total frequencies.

Too many categories can be messy!

$$
\mathrm{N}=35,919,174
$$

Figure 3.1 Annual Estimates of U.S. Population 65 Years and Over by Race, 2003

We can reduce some of the categories

$$
\mathrm{N}=35,919,174
$$

Figure 3.2 Annual Estimates of U.S. Population 65 Years and Over, 2003

The Bar Graph: The Living Arrangements and Labor Force Participation of the Elderly

- Bar graph: a graph showing the differences in frequencies or percentages among categories of a nominal or an ordinal variable. The categories are displayed as rectangles of equal width with their height proportional to the frequency or percentage of the category.

Figure 3.3 Living Arrangements of Males (65 and Older) in the United States, 2000

Can display more info by splitting sex

Figure 3.4 Living Arrangement of U.S. Elderly (65 and Older) by Gender, 2003

Figure 3.5 Percent of Men and Women 55 Years and Over in the Civilian Labor Force, 2002

The Statistical Map: The Geographic Distribution of the Elderly

We can display dramatic geographical changes in American society by using a statistical map. Maps are especially useful for describing geographical variations in variables, such as population distribution, voting patterns, crimes rates, or labor force participation.

Figure 3.6 Percentage Increase in Population 65 Years and Over, 1993 to 2020

Source: U.S. Bureau of the Census, 1993 from 1994 Press Release, Updated National/State Population Estimates, CB94-43; 2020 from "Population Projections for States, by Age, Sex, Race, and Hispanic Origin: 1993 to 2020," Current Population Reports, P25-111, U.S. Government Printing Office, Washington, DC, 1994.

Figure 3.7 Percentage Black of Total State Population 65 Years and Over, 1991

Source: U.S. Bureau of the Census, "1991 Estimates of the Population of States by Age, Sex, Race, and Hispanic Origin," PE-16.

The Histogram

- Histogram: a graph showing the differences in frequencies or percentages among categories of an interval-ratio variable. The categories are displayed as contiguous bars, with width proportional to the width of the category and height proportional to the frequency or percentage of that category.

Figure 3.7 Age Distribution of U.S. Population 65 Years and Over, 2000

Figure 3.10 U.S. Population by Gender and Age, 1955 (in millions)

Source: U.S. Bureau of the Census, Current Population Reports, 1992, P23-178.

Figure 3.11 U.S. Population by Gender and Age, 2010 (in millions)

Source: U.S. Bureau of the Census, Current Population Reports, 1992, P23-178.

The Frequency Polygon

- Frequency polygon: a graph showing the differences in frequencies or percentages among categories of an interval-ratio variable. Points representing the frequencies of each category are placed above the midpoint of the category and are jointed by a straight line.

Source: Adapted from U.S. Bureau of the Census, Center for International Research, International Data Base, 2003.

Population of Japan, Age 55 and Over, 2000, 2010, and 2020

Figure 3.11. Population of Japan, Age 55 and Over, 2000, 2010, and 2020

Time Series Charts

- Time series chart: a graph displaying changes in a variables at different points in time. It shows time (measured in units such as years or months) on the horizontal axis and the frequencies (percentages or rates) of another variable on the vertical axis.

Source: Federal Interagency Forum on Aging Related Statistics, Older Americans 2004: Key Indicators of Well Being, 2004.

Figure 3.12 Percentage of Total U. S. Population 65 Years and Over, 1900 to 2050

Source: U.S. Bureau of the Census, " $65+$ in America," Current Population Reports, 1996, Special Studies, P23-190, Table 6-1.

Figure 3.13 Percentage Currently Divorced Among U.S. Population 65 Years and Over, by Gender, 1960 to 2040

Distortions in Graphs

Graphs not only quickly inform us; they can quickly deceive us. Because we are often more interested in general impressions than in detailed analyses of the numbers, we are more vulnerable to being swayed by distorted graphs.

> - What are graphical distortions?
> - How can we recognize them?

Shrinking an Stretching the Axes: Visual Confusion

Figure 3.16 Cost per Child Enrolled in Head Start Program

Source: Adapted from USA TODAY, March 15, 1993. Copyright 1993 USA TODAY. Reprinted with permission.

Shrinking an Stretching the Axes: Visual Confusion

Figure 3.17 Women in U.S. Legislatures, 1973 to 1993

Source: Adapted from Marty Baumann, USA TODAY, February 12, 1993. Copyright 1993 USA TODAY. Reprinted with permission.

Distortions with Picture Graphs

Figure 3.18 Estimated Number of HIV Infections in 1992

Source: Adapted from The New York Times, June 28, 1992. Copyright © 1992 The New York Times Co. Reprinted by permission.

Statistics in Practice

The following graphs are particularly suitable for making comparisons among groups:

- Bar chart
- Frequency polygon
- Time series chart

Source: Smith, 2003.

Figure 3.17 Percentage of College Graduates among People 55 years and over by age and sex, 2002

Source: Stoops, Nicole. 2004. "Educational Attainment in the United States: 2003." Current Population Reports, P20-550. Washington D.C.: U.S. Government Printing Office.

Figure 3.18 Years of School Completed in the United States by Race and Age, 2003

Why use charts and graphs?

- What do you lose?

-ability to examine numeric detail offered by a table -potentially the ability to see additional relationships within the data
-potentially time: often we get caught up in selecting colors and formatting charts when a simply formatted table is sufficient

- What do you gain?
-ability to direct readers' attention to one aspect of the evidence
-ability to reach readers who might otherwise be intimidated by the same data in a tabular format -ability to focus on bigger picture rather than perhaps minor technical details

